Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 299(8): 104945, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348560

RESUMO

Human Flower (hFWE) isoforms hFWE1-4 are putative transmembrane (TM) proteins that reportedly mediate fitness comparisons during cell competition through extracellular display of their C-terminal tails. Isoform topology, subcellular localization, and duration of plasma membrane presentation are essential to this function. However, disagreement persists regarding the structure of orthologous fly and mouse FWEs, and experimental evidence for hFWE isoform subcellular localization or membrane structure is lacking. Here, we used AlphaFold2 and subsequent molecular dynamics-based structural predictions to construct epitope-tagged hFWE3 and hFWE4, the most abundant human isoforms, for experimental determination of their structure and internalization dynamics. We demonstrate that hFWE3 resides in the membrane of the endoplasmic reticulum (ER), while hFWE4 partially colocalizes with Rab4-, Rab5-, and Rab11-positive vesicles as well as with the plasma membrane. An array of imaging techniques revealed that hFWE4 positions both N- and C-terminal tails and a loop between second and third TM segments within the cytosol, while small (4-12aa) loops between the first and second and the third and fourth TM segments are either exposed to the extracellular space or within the lumen of cytoplasmic vesicles. Similarly, we found hFWE3 positions both N- and C-terminal tails in the cytosol, while a short loop between TM domains extends into the ER lumen. Finally, we demonstrate that hFWE4 exists only transiently at the cell surface and is rapidly internalized in an AP-2- and dynamin-1-dependent manner. Collectively, these data are consistent with a conserved role for hFWE4 in endocytic processes.


Assuntos
Retículo Endoplasmático , Modelos Moleculares , Humanos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Clatrina/metabolismo , Células HEK293
2.
Carcinogenesis ; 42(2): 232-242, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32816038

RESUMO

More than a million cases of cutaneous squamous cell carcinoma are diagnosed in the USA each year, and its incidence is increasing. Most of these malignancies arise from premalignant lesions, providing an opportunity for intervention before malignant progression. We previously documented how cytoplasmic mislocalization of CDC25A in premalignant and malignant skin cancers confers resistance to apoptotic cell death via a mechanism that depends on its interaction with 14-3-3ε. From these data, we hypothesized that 14-3-3ε overexpression drives skin tumor development and progression, such that targeting 14-3-3ε may be a useful strategy for skin cancer treatment. Like CDC25A, 14-3-3ε was overexpressed and mislocalized to the cytoplasm of both benign and malignant human skin cancer. Skin-targeted deletion of the 14-3-3ε gene reduced skin tumor development by 75% and blocked malignant progression. 14-3-3ε suppressed apoptosis through activation of Akt, leading to inhibition of BCL2 associated agonist of cell death and upregulation of Survivin. Using virtual tetrapeptide libraries, we developed a novel peptide that specifically blocked 14-3-3ε heterodimerization and thereby prevented its interaction with CDC25A. The peptide reduced prosurvival signaling, killed skin cancer cells and reduced skin tumor growth in xenograft. Normal skin keratinocytes were unaffected by inhibition or deletion of 14-3-3ε. Thus, targeting of 14-3-3ε dimerization is a promising strategy for the treatment of premalignant skin lesions.


Assuntos
Proteínas 14-3-3/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Fosfatases cdc25/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , 9,10-Dimetil-1,2-benzantraceno/administração & dosagem , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Humanos , Queratinócitos , Masculino , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Multimerização Proteica/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/administração & dosagem , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
iScience ; 27(3): 109033, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375220

RESUMO

Downregulation of intercellular communication through suppression of gap junctional conductance is necessary during wound healing. Connexin 43 (Cx43), a prominent gap junction protein in skin, is downregulated following wounding to restrict communication between keratinocytes. Previous studies found that PKCµ, a novel PKC isozyme, regulates efficient cutaneous wound healing. However, the molecular mechanism by which PKCµ regulates wound healing remains unknown. We have identified that PKCµ suppresses intercellular communication and enhances cell migration in an in vitro wound healing model by regulating Cx43 containing gap junctions. PKCµ can directly interact with and phosphorylate Cx43 at S368, which leads to Cx43 internalization and downregulation. Finally, utilizing phosphomimetic and non-phosphorylatable S368 substitutions and gap junction inhibitors, we confirmed that PKCµ regulates intercellular communication and in vitro wound healing by controlling Cx43-S368 phosphorylation. These results define PKCµ as a critical regulator of Cx43 phosphorylation to control cell migration and wound healing in keratinocytes.

4.
Cureus ; 13(12): e20791, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35111472

RESUMO

Basal cell carcinoma (BCC) is a highly prevalent epidermal neoplasm that most commonly occurs in regions of sun-exposed skin, though rare cases arise in sun-protected areas. BCCs of the vulva account for a small fraction of cases and can be mistaken for other cutaneous genital pathologies on clinical examination. Here we report a case of vulvar BCC that presented as a firm, tender bilateral lesion of the mons pubis and was diagnosed by histopathology and immunostaining for classical BCC markers.

5.
Oncotarget ; 11(35): 3267-3278, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32934772

RESUMO

Non-melanoma skin cancer is the most common form of cancer worldwide. We previously documented an anti-apoptotic role for CDC25A in cutaneous squamous cell carcinoma (SCC), an activity dependent on its association with 14-3-3 proteins. We hypothesized that targeting CDC25A-14-3-3ε interactions may be an effective strategy for inducing skin cancer cell apoptosis. Co-immunoprecipitation revealed that CDC25A associated with 14-3-3ε, 14-3-3γ and 14-3-3ζ in SCC cells but not normal keratinocytes. 14-3-3ε and CDC25A activated Akt/BAD/Survivin pro-survival signaling. To target the interaction of 14-3-3ε with CDC25A for cancer therapy, we developed two novel phospho-peptides, pS and pT, corresponding to each of the 14-3-3 binding sites of CDC25A, to specifically interfere with 14-3-3ε binding to CDC25A. Peptides pT (IC50 = 22.1 µM), and pS (IC50 = 29 µM) induced SCC cell death and blocked 14-3-3ε binding to CDC25A. pS or pT treatment of SCC xenografts increased apoptotic cell death and decreased pro-survival P-Akt (S473) and Survivin, demonstrating the effectiveness of the peptides in vivo. These findings lay a framework for the further development of peptides to target 14-3-3ε-CDC25A interactions for skin cancer treatment.

6.
Microbiologyopen ; 9(1): e00947, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595707

RESUMO

In gram-negative bacteria, energy-dependent active transport of iron-bound substrates across the outer membrane is achieved through the TonB systems of proteins. Three TonB systems have been identified in the human pathogen Vibrio vulnificus. The TonB1 system contains three proteins: TonB1, ExbB1, and ExbD1. Both the TonB2 and TonB3 systems have been shown to also contain a fourth protein, TtpC2 and TtpC3, respectively. Here, we report and begin to characterize two additional proteins in the TonB2 and TonB3 systems: TtpB and TtpD. Both TtpB2 and TtpD2 are absolutely required for the function of the TonB2 system in V. vulnificus. However, although both TtpB3 and TtpD3 in the TonB3 system are related to the proteins in the TonB2 system, neither are active in iron transport. All six protein components of the TonB2 system-TonB2, ExbB2, ExbD2, TtpB2, TtpC2, and TtpD2-are essential for the uptake of both endogenously produced iron-bound siderophores and exogenous siderophores produced from other organisms. Through complementation, we have shown that V. vulnificus is capable of using different TtpD2 proteins from other Vibrio species to bring in multiple siderophores. In contrast, we also demonstrate that TtpB2 must come from V. vulnificus, and not other species within the genus, to complement mutations in the TonB2 system.


Assuntos
Proteínas de Bactérias/genética , Transporte Biológico/genética , Ferro/metabolismo , Proteínas de Membrana/genética , Sideróforos/genética , Vibrio vulnificus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas de Membrana/metabolismo , Alinhamento de Sequência , Sideróforos/metabolismo , Vibrio vulnificus/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA