Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2116021119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617429

RESUMO

For thousands of years, the unique physicochemical properties of plant exudates have defined uses in material culture and practical applications. Native Australian plant exudates, including resins, kinos, and gums, have been used and continue to be used by Aboriginal Australians for numerous technical and cultural purposes. A historic collection of well-preserved native Australian plant exudates, assembled a century ago by plant naturalists, gives a rare window into the history and chemical composition of these materials. Here we report the full hierarchical characterization of four genera from this collection, Xanthorrhoea, Callitris, Eucalyptus, and Acacia, from the local elemental speciation, to functional groups and main molecular markers. We use high-resolution X-ray Raman spectroscopy (XRS) to achieve bulk-sensitive chemical speciation of these plant exudates, including insoluble, amorphous, and cross-linked fractions, without the limitation of invasive and/or surface specific methods. Combinatorial testing of the XRS data allows direct classification of these complex natural species as terpenoid, aromatic, phenolic, and polysaccharide materials. Differences in intragenera chemistry was evidenced by detailed interpretation of the XRS spectral features. We complement XRS with Fourier-transform infrared (FT-IR) spectroscopy, gas chromatography­mass spectrometry (GC-MS), and pyrolysis­GC-MS (Py-GC-MS). This multimodal approach provides a fundamental understanding of the chemistry of these natural materials long used by Aboriginal Australian peoples.


Assuntos
Acacia , Asphodelaceae , Eucalyptus , Pinales , Exsudatos de Plantas , Acacia/química , Austrália , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pinales/química , Exsudatos de Plantas/química , Terpenos/análise , Asphodelaceae/química
2.
J Am Chem Soc ; 146(14): 9836-9850, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545903

RESUMO

The electronic structure and geometrical organization of aqueous Cu2+ have been investigated by using X-ray photoelectron spectroscopy (XPS) at the Cu L-edge combined with state-of-the-art ab initio molecular dynamics and a quantum molecular approach designed to simulate the Cu 2p X-ray photoelectron spectrum. The calculations offer a comprehensive insight into the origin of the main peak and satellite features. It is illustrated how the energy drop of the Cu 3d levels (≈7 eV) following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbitals (MOs) from the dominant metal to the dominant MO nature of water. It is particularly revealed how the repositioning of the Cu 3d levels induces the formation of new bonding (B) and antibonding (AB) orbitals, from which shakeup mechanisms toward the relaxed H-SOMO operate. As highlighted in this study, the appearance of the shoulder near the main peak corresponds to the characteristic signature of shakeup intraligand (1a1 → H-SOMO(1b1)) excitations in water, providing insights into the average dipole moment distribution (≈36°) of the first-shell water molecules surrounding the metal ion and its direct impact on the broadening of the satellite. It is also revealed that the main satellite at 8 eV from the main peak corresponds to (metal/1b2 → H-SOMO(1b1) of water) excitations due to a bonding/antibonding (B/AB) interaction of Cu 3d levels with the deepest valence O2p/H1s 1b2 orbitals of water. This finding underscores the sensitivity of XPS to the electronic structure and orientation of the nearest water molecules around the central ion.

3.
Chem Rev ; 122(15): 12977-13005, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35737888

RESUMO

This paper provides a review of the characterization of organic systems via X-ray Raman scattering (XRS) and a step-by-step guidance for its application. We present the fundamentals of XRS required to use the technique and discuss the main parameters of the experimental set-ups to optimize spectral and spatial resolution while maximizing signal-to-background ratio. We review applications that target the analysis of mixtures of organic compounds, the identification of minor spectral features, and the spatial discrimination in heterogeneous systems. We discuss the recent development of the direct tomography technique, which utilizes the XRS process as a contrast mechanism for assessing the three-dimensional spatially resolved carbon chemistry of complex organic materials. We conclude by exposing the current limitations and provide an outlook on how to overcome some of the existing challenges and advance future developments and applications of this powerful technique for complex organic systems.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Raios X
4.
Phys Chem Chem Phys ; 26(5): 4363-4371, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235804

RESUMO

Inelastic X-ray scattering (IXS) spectroscopy has been used in many fields of solid-state physics and theoretical chemistry as an accurate and quantitative probe of elementary excitations. We show that non-resonant IXS spectra in the energy loss range below 100 eV exhibit a strong contrast across a wide range of commercially available pigments, opening new routes for their discrimination. These signatures combine plasmonic transitions, collective excitations and low energy absorption edges. We have performed IXS to discriminate different artists' pigments within complex mixtures and to quantitatively determine rutile and anatase polymorphs of TiO2. The integration of experimental data on pigment powders with suitable ab initio simulations shows a precise fit of the spectroscopic data both in the position of the resonances and in their relative intensity.

5.
Small ; 19(49): e2304872, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594722

RESUMO

Charge ordering (CO) phenomena have been widely debated in strongly-correlated electron systems mainly regarding their role in high-temperature superconductivity. Here, the structural and charge distribution in NdNiO2 thin films prepared with and without capping layers, and characterized by the absence and presence of CO are elucidated. The microstructural and spectroscopic analysis is done by scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) and hard X-ray photoemission spectroscopy (HAXPES). Capped samples show Ni1+ , with an out-of-plane (o-o-p) lattice parameter of around 3.30 Å indicating good stabilization of the infinite-layer structure. Bulk-sensitive HAXPES on Ni-2p shows weak satellite features indicating large charge-transfer energy. The uncapped samples evidence an increase of the o-o-p parameter up to 3.65 Å on the thin film top with a valence toward Ni2+ in this region. Here, 4D-STEM demonstrates (303)-oriented stripes which emerge from partially occupied apical oxygen. Those stripes form quasi-2D coherent domains viewed as rods in the reciprocal space with Δqz ≈ 0.24 reciprocal lattice units (r.l.u.) extension located at Q = ( ± 1 3 , 0 , ± 1 3 $\pm \frac{1}{3},0,\pm \frac{1}{3}$ ) and ( ± 2 3 , 0 , ± 2 3 $\pm \frac{2}{3},0,\pm \frac{2}{3}$ ) r.l.u. The stripes associated with oxygen re-intercalation concomitant with hole doping suggest a possible link to the previously reported CO in infinite-layer nickelate thin films.

6.
Proc Natl Acad Sci U S A ; 117(36): 21962-21967, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848070

RESUMO

Two-dimensional electron gases (2DEGs) are at the base of current nanoelectronics because of their exceptional mobilities. Often the accumulation layer forms at polar interfaces with longitudinal optical (LO) modes. In most cases, the many-body screening of the quasi-2DEGs dramatically reduces the Fröhlich scattering strength. Despite the effectiveness of such a process, it has been recurrently proposed that a remote coupling with LO phonons persists even at high carrier concentration. We address this issue by perturbing electrons in an accumulation layer via an ultrafast laser pulse and monitoring their relaxation via time- and momentum-resolved spectroscopy. The cooling rate of excited carriers is monitored at doping level spanning from the semiconducting to the metallic limit. We observe that screening of LO phonons is not as efficient as it would be in a strictly 2D system. The large discrepancy is due to the remote coupling of confined states with the bulk. Our data indicate that the effect of such a remote coupling can be mimicked by a 3D Fröhlich interaction with Thomas-Fermi screening. These conclusions are very general and should apply to field effect transistors (FET) with high-κ dielectric gates, van der Waals heterostructures, and metallic interfaces between insulating oxides.

7.
Nano Lett ; 22(5): 2065-2069, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192357

RESUMO

The large tolerance of hybrid perovksites to the trapping of electrons by defects is a key asset in photovoltaic applications. Here, the ionic surface terminations of CH3NH3PbI3 are employed as a testbed to study the effect of electrostatic fields on the dynamics of excited carriers. We characterize the transition across the tetragonal to orthorhombic phase. The observed type II band offset and drift of the excited electrons highlight the important role that organic cations have on the screening of local electrostatic fields. When the orientation of organic cations is frozen in the orthorhombic phase, the positively charged termination induces a massive accumulation of excited electrons at the surface of the sample. Conversely, no electron accumulation is observed in the tetragonal phase. We conclude that the local fields cannot penetrate in the sample when the polarizability of freely moving cations boosts the dielectric constant up to ε = 120.

8.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

9.
Inorg Chem ; 60(2): 798-806, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33401906

RESUMO

A multiedge study of the local structure of lithium borate glasses and melts has been carried out using X-ray Raman scattering (XRS) as a function of temperature. Thanks to a wide range of compositions, from pure B2O3 up to the metaborate composition, we are able to finely interpret the modifications of the local environment of both the boron and oxygen atoms in terms of boron coordination number, formation of nonbridging oxygens (NBOs), and polymerization degree of the borate framework as a function of temperature and composition. A temperature-induced [4]B to [3]B conversion is observed above the glass transition temperature (Tg) from the glass to the melt from the triborate composition up to the metaborate composition. Two distinct melt structures are reported: a well-polymerized borate network-with few NBOs-below the triborate composition and a depolymerized borate network above the diborate composition with a rapid increase of the number of NBOs when Li2O is added. These two structurally distinct melts allow explaining the two dynamic regimes observed for lithium ion diffusion.

10.
Nano Lett ; 19(1): 488-493, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525684

RESUMO

We investigate black phosphorus by time- and angle-resolved photoelectron spectroscopy. The electrons excited by 1.57 eV photons relax down to a conduction band minimum within 1 ps. Despite the low band gap value, no relevant amount of carrier multiplication could be detected at an excitation density 3-6 × 1019 cm-3. In the thermalized state, the band gap renormalization is negligible up to a photoexcitation density that fills the conduction band by 150 meV. Astonishingly, a Stark broadening of the valence band takes place at an early delay time. We argue that electrons and holes with a high excess energy lead to inhomogeneous screening of near surface fields. As a consequence, the chemical potential is no longer pinned in a narrow impurity band.

11.
Angew Chem Int Ed Engl ; 59(23): 9113-9119, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32134154

RESUMO

The first colour photographs were created by a process introduced by Edmond Becquerel in 1848. The nature of these photochromatic images colours motivated a debate between scientists during the XIXth century, which is still not settled. We present the results of chemical analysis (EDX, HAXPES and EXAFS) and morphology studies (SEM, STEM) aiming at explaining the optical properties of the photochromatic images (UV-visible spectroscopy and low loss EELS). We rule out the two hypotheses (pigment and interferences) that have prevailed since 1848, respectively based on variations in the oxidation degree of the compound forming the sensitized layer and periodically spaced photolytic silver planes. A study of the silver nanoparticles dispersions contained in the coloured layers showed specific localizations and sizes distributions of the nanoparticles for each colour. These results allow us to formulate a plasmonic hypothesis on the origin of the photochromatic images colours.

12.
Anal Chem ; 89(20): 10819-10826, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28902506

RESUMO

Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280-350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Here we report the use of XRS at ∼6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. We show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.

13.
Phys Chem Chem Phys ; 18(22): 15133-42, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199185

RESUMO

We have measured resonant-Auger decay following Cl 1s(-1) excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p(-2) final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states. Using this approach we utilized the ELI contributions to obtain the intensity ratios of the overlapping states Cl 1s(-1)4pπ/1s(-1)4pσ in HCl and Cl 1s(-1)4pe/1s(-1)4pa1 in CH3Cl. The experimental value for HCl is compared with theoretical results showing satisfactory agreement.

14.
Nano Lett ; 15(4): 2533-41, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25768912

RESUMO

The electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here, we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca(1-x)Ce(x)MnO3, thus providing insight on how interface-engineering can enhance these switching effects.

15.
Phys Rev Lett ; 114(9): 093001, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793809

RESUMO

Direct measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.

16.
Inorg Chem ; 53(20): 10903-8, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25275633

RESUMO

Probing the local environment of low-Z elements, such as oxygen, is of great interest for understanding the atomic-scale behavior in materials, but it requires experimental techniques allowing it to work with versatile sample environments. In this paper, the local environment of lithium borate crystals is investigated using non-resonant inelastic X-ray scattering (NRIXS) at energy losses corresponding to the oxygen K-edge. Large variations of the spectral features are observed close to the edge onset in the 535-540 eV energy range when varying the Li2O content. Calculations allow identification of contributions associated with bridging oxygen (BO) and non-bridging oxygen (NBO) atoms. The main result resides in the observed core-level shift of about 1.7 eV in the spectral signatures of the BO and NBO. The clear signature at 535 eV in the O K-edge NRXIS spectrum is thus an original way to probe the presence of NBOs in borates, with the great advantage of making possible the use of complex environments such as a high-pressure cell or high-temperature device for in situ measurements.

17.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758768

RESUMO

We have built and commissioned a novel standalone multi-crystal x-ray spectrometer (MOSARIX) in the von Hamos configuration based on highly annealed pyrolytic graphite crystals. The spectrometer is optimized for the energy range of 2-5 keV, but this range can be extended up to 20 keV by using higher reflection orders. With its nine crystals and a Pilatus detector, MOSARIX achieves exceptional detection efficiency with good resolving power (better than 4000), opening the door to study small cross section phenomena and perform fast in situ measurements. The spectrometer operates under a He atmosphere, which provides a flexible sample environment for measurements in gas, liquid, and solid phases.

18.
ACS Nano ; 18(5): 4077-4088, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271616

RESUMO

The metal-hydride-based "topochemical reduction" process has produced several thermodynamically unstable phases across various transition metal oxide series with unusual crystal structures and nontrivial ground states. Here, by such an oxygen (de-)intercalation method we synthesis a samarium nickelate with ordered nickel valences associated with tri-component coordination configurations. This structure, with a formula of Sm9Ni9O22 as revealed by four-dimensional scanning transmission electron microscopy (4D-STEM), emerges from the intricate planes of {303}pc ordered apical oxygen vacancies. X-ray spectroscopy measurements and ab initio calculations show the coexistence of square planar, pyramidal, and octahedral Ni sites with mono-, bi-, and tri-valences. It leads to an intense orbital polarization, charge-ordering, and a ground state with a strong electron localization marked by the disappearance of ligand-hole configuration at low temperature. This nickelate compound provides another example of previously inaccessible materials enabled by topotactic transformations and presents an interesting platform where mixed Ni valence can give rise to exotic phenomena.

19.
ACS Appl Mater Interfaces ; 15(9): 12485-12494, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847773

RESUMO

A heterojunction is the key junction for charge extraction in many thin film solar cell technologies. However, the structure and band alignment of the heterojunction in the operating device are often difficult to predict from calculations and, due to the complexity and narrow thickness of the interface, are difficult to measure directly. In this study, we demonstrate a technique for direct measurement of the band alignment and interfacial electric field variations of a fully functional lead halide perovskite solar cell structure under operating conditions using hard X-ray photoelectron spectroscopy (HAXPES). We describe the design considerations required in both the solar cell devices and the measurement setup and show results for the perovskite, hole transport, and gold layers at the back contact of the solar cell. For the investigated design, the HAXPES measurements suggest that 70% of the photovoltage was generated at this back contact, distributed rather equally between the hole transport material/gold interface and the perovskite/hole transport material interface. In addition, we were also able to reconstruct the band alignment at the back contact at equilibrium in the dark and at open circuit under illumination.

20.
Proc Natl Acad Sci U S A ; 105(34): 12159-63, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18711146

RESUMO

The absorption of light by materials proceeds through the formation of excitons, which are states in which an excited electron is bound to the valence hole it vacated. Understanding the structure and dynamics of excitons is important, for example, for developing technologies for light-emitting diodes or solar energy conversion. However, there has never been an experimental means to study the time-dependent structure of excitons directly. Here, we use causality-inverted inelastic x-ray scattering (IXS) to image the charge-transfer exciton in the prototype insulator LiF, with resolutions Delta t = 20.67 as (2.067 x 10(-17) s) in time and Delta x = 0.533 A (5.33 x 10(-11) m) in space. Our results show that the exciton has a modulated internal structure and is coherently delocalized over two unit cells of the LiF crystal (approximately 8 A). This structure changes only modestly during the course of its life, which establishes it unambiguously as a Frenkel exciton and thus amenable to a simplified theoretical description. Our results resolve an old controversy about excitons in the alkali halides and demonstrate the utility of IXS for imaging attosecond electron dynamics in condensed matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA