Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(10): 14773-14788, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985192

RESUMO

A theoretical description of light emission, propagation and re-absorption in semiconductor multilayer stacks is derived based on the transverse Green's function of the electromagnetic field in the presence of a complex dielectric. The canonical dipole emission model is parametrized in terms of the local optical material constants and the local quasi-Fermi level splitting using the detailed balance relation between local absorption and emission rates. The framework obtained in this way is shown to reproduce the generalized Kirchhoff relations between the luminescent emission from metal halide perovskite slabs under uniform excitation and the slab absorptance of light with arbitrary angle of incidence. Use of the proper local density of transverse photon states in the local emission rate includes cavity effects in the generalized Planck law for internal spontaneous emission, which are neglected in the conventional Van Roosbroeck-Shockley formalism and avoids spurious divergencies due to non-radiative energy transfer via longitudinal modes. Finally, a consistent treatment of re-absorption provides the local rate of secondary photogeneration required for the consideration of photon recycling in an opto-electronic device simulator that includes the effects of charge transport.

2.
Sci Technol Adv Mater ; 19(1): 291-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707069

RESUMO

We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.

3.
Opt Express ; 23(11): A539-46, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072878

RESUMO

We present and experimentally validate a computational model for the light propagation in thin-film solar cells that integrates non-paraxial scalar diffraction theory with non-sequential ray-tracing. The model allows computing the spectral layer absorbances of solar cells with micro- and nano-textured interfaces directly from measured surface topographies. We can thus quantify decisive quantities such as the parasitic absorption without relying on heuristic scattering intensity distributions. In particular, we find that the commonly used approximation of Lambertian scattering intensity distributions for internal light propagation is violated even for solar cells on rough textured substrates. More importantly, we demonstrate how both scattering and parasitic absorption must be controlled to maximize photocurrent.

4.
Sci Technol Adv Mater ; 16(3): 035003, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877804

RESUMO

Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability.

5.
Phys Chem Chem Phys ; 16(24): 12251-60, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24820059

RESUMO

We present a significant efficiency enhancement of hybrid bulk heterojunction solar cells by utilizing CdSe quantum dots attached to reduced graphene oxide (rGO) as the electron accepting phase, blended with the PCPDTBT polymer. The quantum dot attachment to rGO was achieved following a self-assembly approach, recently developed, using thiolated reduced graphene oxide (TrGO) to form a TrGO-CdSe nanocomposite. Therefore, we are able to obtain TrGO-CdSe quantum dot/PCPDTBT bulk-heterojunction hybrid solar cells with power conversion efficiencies of up to 4.2%, compared with up to 3% for CdSe quantum dot/PCPDTBT devices. The improvement is mainly due to an increase of the open-circuit voltage from 0.55 V to 0.72 V. We found evidence for a significant change in the heterojunction donor-acceptor blend nanomorphology, observable by a more vertical alignment of the TrGO-quantum dot nanocomposites in the z-direction and a different nanophase separation in the x-y direction compared to the quantum dot only containing device. Moreover, an improved charge extraction and trap state reduction were observed for TrGO containing hybrid solar cells.

6.
ACS Appl Mater Interfaces ; 16(32): 42835-42850, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086318

RESUMO

Nonstoichiometric nickel oxide (NiOx) is one of the very few metal oxides successfully used as hole extraction layer in p-i-n type perovskite solar cells (PSCs). Its favorable optoelectronic properties and facile large-scale preparation methods are potentially relevant for future commercialization of PSCs, though currently low operational stability of PSCs is reported when a NiOx hole extraction layer is used in direct contact with the perovskite absorber. Poorly understood degradation reactions at this interface are seen as cause for the inferior stability, and a variety of interface passivation approaches have been shown to be effective in improving the overall solar cell performance. To gain a better understanding of the processes happening at this interface, we systematically passivated specific defects on NiOx with three different categories of organic/inorganic compounds. The effects on NiOx and the perovskite (MAPbI3) deposited on top were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Here, we find that the perovskite's structural stability and film formation can be significantly affected by the passivation treatment of the NiOx surface. In combination with density functional theory (DFT) calculations, a likely origin of NiOx-perovskite degradation interactions is proposed. The surface passivated NiOx layers were incorporated into MAPbI3-based PSCs, and the influence on device performance and operational stability was investigated by current-voltage (J-V) characterization, impedance spectroscopy (IS), and open circuit voltage decay (OCVD) measurements. Interestingly, we find that a superior structural stability due to interface passivation must not relate to high operational stability. The discrepancy comes from the formation of excess ions at the interface, which negatively impacts all solar cell parameters.

7.
Energy Environ Sci ; 17(11): 3832-3847, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38841317

RESUMO

The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.

8.
Nat Commun ; 11(1): 387, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959755

RESUMO

Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling.

9.
ACS Appl Mater Interfaces ; 11(26): 23320-23328, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180209

RESUMO

A variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensity-modulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to -3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation.

10.
ACS Appl Mater Interfaces ; 10(37): 31552-31559, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148341

RESUMO

From s-polarized, angle-dependent measurements of the electroluminescence spectra in a three-layer phosphorescent organic light-emitting diode, we calculate the exciton distribution inside the 35 nm thick emission layer. The shape of the exciton profile changes with the applied bias due to differing field dependencies of the electron and hole mobilities. A split emission zone with high exciton densities at both sides of the emission layer is obtained, which is explained by the presence of energy barriers and similar electron and hole mobilities. A peak in the transient electroluminescence signal after turn-off and the application of a reverse bias is identified as a signature of a split emission zone.

11.
ACS Appl Mater Interfaces ; 8(10): 6554-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26914281

RESUMO

Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am. Chem. Soc. 2013 , 135 , 18008 - 18011 ), these features have been exploited in cyanine light-emitting electrochemical cells (LECs). Here, we demonstrate that stacked, constant-voltage driven trimethine cyanine LECs with various counteranions develop a p-i-n junction that is composed of p- and n-doped zones and an intrinsic region where light-emission occurs. We introduce a method that combines spectral photocurrent response measurements with optical modeling and find that at maximum current the intrinsic region is centered at ∼37% away from the anode. Transient capacitance, photoluminescence and attenuance experiments indicate a device situation with a narrow p-doped region, an undoped region that occupies ∼72% of the dye layer thickness and an n-doped region with a maximum doping concentration of 0.08 dopant/cyanine molecule. Finally, we observe that during device relaxation the parent cyanines are not reformed. We ascribe this to irreversible reactions between doped cyanine radicals. For sterically conservative cyanine dyes, this suggests that undesired radical decomposition pathways limit the LEC long-term stability in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA