Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(1): 180-192.e11, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563676

RESUMO

The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Imunoglobulina G , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia/métodos
2.
Nature ; 573(7775): 519-525, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31554981

RESUMO

Electrodes with low work functions are required to efficiently inject electrons into semiconductor devices. However, when the work function drops below about 4 electronvolts, the electrode suffers oxidation in air, which prevents its fabrication in ambient conditions. Here we show that multivalent anions such as oxalate, carbonate and sulfite can act as powerful latent electron donors when dispersed as small ion clusters in a matrix, while retaining their ability to be processed in solution in ambient conditions. The anions in these clusters can even n-dope the semiconductor core of π-conjugated polyelectrolytes that have low electron affinities, through a ground-state doping mechanism that is further amplified by a hole-sensitized or photosensitized mechanism in the device. A theoretical analysis of donor levels of these anions reveals that they are favourably upshifted from ionic lattices by a decrease in the Coulomb stabilization of small ion clusters, and by irreversibility effects. We attain an ultralow effective work function of 2.4 electronvolts with the polyfluorene core. We realize high-performance, solution-processed, white-light-emitting diodes and organic solar cells using polymer electron injection layers with these universal anion donors, demonstrating a general approach to chemically designed and ambient-processed Ohmic electron contacts for semiconductor devices.

3.
Anal Chem ; 96(24): 9834-9841, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832651

RESUMO

Complexed and tiresome pretreatment processes have significantly impeded in-field analysis of environmental specimens. Herein, an all-in-one sample separation and enrichment strategy based on a compact charge-selective capture/nanoconfined enrichment (CSC/NCE) device is exploited for marker-free surface-enhanced Raman spectroscopy (SERS) detection of charged pesticides in matrix specimens. This tactic incorporating in situ separations, seizing, and nanoconfined enhancement can greatly elevate the effectiveness of sample pretreatment. Importantly, CSC/NCE with excellent adsorption performances and excellent plasmonic features facilitates concentration and signal amplification of electrically charged pesticides. With the introduction of an electric field on this integrated CSC/NCE, the matrix effect in samples could be significantly eradicated, and a distinct SERS response is witnessed for targeted analytes. Accurate quantification of multipesticides is achieved by synergizing the CSC/NCE chip and chemometrics, and the contents found by the CSC/NCE-based sensing strategy agree with those obtained from chromatography assays with relative deviations lower than 10%. The facile and versatile all-in-one tactic infused in a compact chip exhibits enormous potential for field-test application in chemical measurement and food safety.


Assuntos
Praguicidas , Análise Espectral Raman , Praguicidas/análise , Miniaturização , Nanopartículas Metálicas/química , Propriedades de Superfície
4.
Ann Rheum Dis ; 83(5): 608-623, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38290829

RESUMO

OBJECTIVES: The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS: Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS: We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION: The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Células Th1 , Antígenos de Diferenciação Mielomonocítica , Antígenos CD
5.
J Transl Med ; 22(1): 422, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702814

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única , Microambiente Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Prognóstico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Comunicação Celular
6.
Ann Surg Oncol ; 31(1): 125-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884700

RESUMO

BACKGROUND: Tumor necrosis has been indicated to correlate with dismal survival outcomes of a variety of solid tumors. However, the significance and prognostic value of tumor necrosis remain unclear in gallbladder carcinoma. The aim of this research is to explore the relationships between necrosis with long-term survival and tumor-related biological characteristics of patients with gallbladder carcinoma. PATIENTS AND METHODS: Patients with gallbladder carcinoma who accepted curative-intent resection in West China Hospital of Sichuan University (China) between January 2010 and December 2021 were retrospectively analyzed. Tumor necrosis was determined by staining the patient's original tissue sections with hematoxylin and eosin. Based on the presence of tumor necrosis, the pathologic features and survival outcomes were compared. RESULTS: This study enrolled 213 patients with gallbladder carcinoma who underwent curative-intent surgery, of whom 89 had tumor necrosis. Comparative analyses indicated that patients with tumor necrosis had more aggressive clinicopathological features, such as larger tumor size (p = 0.002), poorer tumor differentiation (p = 0.029), more frequent vascular invasion (p < 0.001), presence of lymph node metastasis (p = 0.014), and higher tumor status (p = 0.01), and experienced poorer survival. Univariate and multivariate analyses revealed that tumor necrosis was an independent prognostic factor for overall survival (multivariate: HR 1.651, p = 0.026) and disease-free survival (multivariate: HR 1.589, p = 0.040). CONCLUSIONS: Tumor necrosis can be considered as an independent predictive factor for overall survival and disease-free survival among individuals with gallbladder carcinoma, which was a valuable pathologic parameter.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Prognóstico , Neoplasias da Vesícula Biliar/patologia , Estudos Retrospectivos , Intervalo Livre de Doença , China , Estadiamento de Neoplasias
7.
Reproduction ; 167(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614129

RESUMO

In brief: The mechanism underlying the accumulation of γδT cells in the decidua, which helps maintain maternal-fetal immunotolerance in early pregnancy, is unknown. This study reveals that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. Abstract: Decidual γδT (dγδT) cells help maintain maternal-fetal immunotolerance in early pregnancy. However, the mechanism underlying the accumulation of γδT cells in the decidua is unknown. Previous work showed that RANKL upregulated intercellular adhesion molecule 1 (ICAM-1) in decidual stromal cells (DSCs), and Rankl knockout mice had limited dγδT cell populations. In this study, we measured the expression levels of RANKL/RANK and ICAM-1 in DSCs, in addition to the integrins of ICAM-1 on dγδT cells, and the number of dγδT cells from patients with recurrent spontaneous abortion (RSA) and normal pregnant women in the first trimester. RSA patients showed significantly decreased RANKL/RANK and ICAM-1/CD11a signaling in decidua, and a decreased percentage of dγδT cells, which was positively correlated with DSC-derived RANKL and ICAM-1. Next, an in vitro adhesion experiment showed that the enhanced attraction of human DSCs to dγδT cells after RANKL overexpression was almost completely aborted by anti-ICAM-1. Furthermore, Rankl knockout mice showed a significant reduction in NF-κB activity compared with wild-type controls. Finally, we applied a selective NF-κB inhibitor named PDTC to validate the role of NF-κB in RANKL-mediated ICAM-1 upregulation. Taken together, our data show that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. A reduction in RANKL/ICAM-1 signaling in DSCs may result in insufficient accumulation of γδT cells in decidua and, in turn, RSA.


Assuntos
Decídua , Molécula 1 de Adesão Intercelular , NF-kappa B , Ligante RANK , Regulação para Cima , Adulto , Animais , Feminino , Humanos , Camundongos , Gravidez , Decídua/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Camundongos Knockout , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Linfócitos T/metabolismo
8.
Cytotherapy ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38842968

RESUMO

Although several cell-based therapies have received FDA approval, and others are showing promising results, scalable, and quality-driven reproducible manufacturing of therapeutic cells at a lower cost remains challenging. Challenges include starting material and patient variability, limited understanding of manufacturing process parameter effects on quality, complex supply chain logistics, and lack of predictive, well-understood product quality attributes. These issues can manifest as increased production costs, longer production times, greater batch-to-batch variability, and lower overall yield of viable, high-quality cells. The lack of data-driven insights and decision-making in cell manufacturing and delivery is an underlying commonality behind all these problems. Data collection and analytics from discovery, preclinical and clinical research, process development, and product manufacturing have not been sufficiently utilized to develop a "systems" understanding and identify actionable controls. Experience from other industries shows that data science and analytics can drive technological innovations and manufacturing optimization, leading to improved consistency, reduced risk, and lower cost. The cell therapy manufacturing industry will benefit from implementing data science tools, such as data-driven modeling, data management and mining, AI, and machine learning. The integration of data-driven predictive capabilities into cell therapy manufacturing, such as predicting product quality and clinical outcomes based on manufacturing data, or ensuring robustness and reliability using data-driven supply-chain modeling could enable more precise and efficient production processes and lead to better patient access and outcomes. In this review, we introduce some of the relevant computational and data science tools and how they are being or can be implemented in the cell therapy manufacturing workflow. We also identify areas where innovative approaches are required to address challenges and opportunities specific to the cell therapy industry. We conclude that interfacing data science throughout a cell therapy product lifecycle, developing data-driven manufacturing workflow, designing better data collection tools and algorithms, using data analytics and AI-based methods to better understand critical quality attributes and critical-process parameters, and training the appropriate workforce will be critical for overcoming current industry and regulatory barriers and accelerating clinical translation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38687183

RESUMO

Three Gram-positive, obligately anaerobic bacterial strains, namely CSJ-1T, CSJ-3T, and CSJ-4T, were isolated from faeces of healthy persons. They were characterized through a combination of whole-genome sequencing, phenotypic traits, and metabolomic analysis. The genome sizes of CSJ-1T, CSJ-4T, and CSJ-3T were 3.3, 3.8, and 6.1 Mbp, with DNA G+C contents of 47.2, 48.3, and 48.8 mol%, respectively. Strain CSJ-3T was identified as representing a novel species, Diplocloster hominis (type strain CSJ-3T=CGMCC 1.18033T=JCM 36512T) of the genus Diplocloster. The 16S rRNA gene sequence similarity and whole genome average nucleotide identity (gANI) of CSJ-4T to its closest related species, Diplocloster modestus ASD 4241T, were 98.3 and 91.4 %, respectively. Comparative analysis of 16S rRNA gene sequences showed 91.6 % similarity between CSJ-1T and its closest phylogenetic neighbour, Catenibacillus scindens DSM 106146T, and 93.3 % similarity between CSJ-4T and its closest relative strain, Clostridium fessum SNUG30386T. Based on the polyphasic taxonomic results, we proposed two novel genera and three novel species. Strain CSJ-1T was identified as representing a novel species of novel genus, Anaerolentibacter hominis gen. nov. sp. nov. (type strain CSJ-1T=CGMCC 1.18046T=JCM 36511T) of the family Lachnospiraceae, and strain CSJ-4T was identified as representing a novel species of novel genus Pilosibacter fragilis gen. nov. sp. nov. (type strain CSJ-4T=CGMCC 1.18026T= JCM 36513T) of the family Clostridiaceae.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Fezes , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Fezes/microbiologia , DNA Bacteriano/genética , Humanos , Ácidos Graxos/análise , Genoma Bacteriano , Sequenciamento Completo do Genoma
10.
Physiol Plant ; 176(2): e14296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650503

RESUMO

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Assuntos
Betaína , Colina Desidrogenase , Tolerância ao Sal , Betaína/metabolismo , Tolerância ao Sal/genética , Colina Desidrogenase/metabolismo , Colina Desidrogenase/genética , Colina/metabolismo , Clorofíceas/genética , Clorofíceas/fisiologia , Clorofíceas/enzimologia , Clorofíceas/metabolismo , Microalgas/genética , Microalgas/enzimologia , Microalgas/metabolismo , Simulação de Acoplamento Molecular , Cloreto de Sódio/farmacologia
11.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572787

RESUMO

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Nefropatias , Camundongos , Humanos , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Aldosterona/efeitos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Acetatos/efeitos adversos , Acetatos/metabolismo , Fibrose
12.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37532836

RESUMO

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38183644

RESUMO

BACKGROUND: Zanthoxylum bungeanum (Sichuan pepper; in Chinese) is used as a spice worldwide and is a potentially life-threatening allergenic food source, as first reported by our team in 2005. However, its allergen components are unknown. OBJECTIVE: We aim to identify and characterize its major allergen and determine its cross-reactivities with citrus seeds, pistachios, and cashew seeds. METHODS: Ionic exchange and molecular exclusion chromatography were used to isolate the protein components from Sichuan pepper seed. A protein fraction was characterized by SDS-PAGE, analytical ultracentrifugation, mass spectrometry, and circular dichroism spectroscopy. The coding region of it was amplified from the genome. ELISA and competitive ELISA assays were used to investigate the allergenicity and cross-reactivity of allergens. RESULTS: This protein allergen was around 14 kDa. It was a 2S albumin similar to an α-Amylase inhibitor (AAI) domain-containing protein of Citrus sinensis. Circular dichroism spectroscopy showed its thermal stability was high. A 303 bps DNA sequence of the AAI domain was cloned from the genome of the Sichuan pepper. Competitive ELISA assays showed positive cross-reactivities between this allergen and citrus seeds, pistachios, and cashew seeds. CONCLUSION: A major allergen of around 14 kDa from Sichuan pepper seed was confirmed, which belongs to the 2S albumin of plant seed storage proteins. Based on the nomenclature of the IUIS Subcommittee for Allergen Nomenclature, this allergen is designated as Zan b 1.01. The cross-reactivities were demonstrated between Zan b 1.01 and citrus seeds, pistachios, and cashew seeds.

14.
Yi Chuan ; 46(6): 490-501, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886152

RESUMO

The JNK signaling pathway plays crucial roles in various physiological processes, including cell proliferation, differentiation, migration, apoptosis, and stress response. Dysregulation of this pathway is closely linked to the onset and progression of numerous major diseases, such as developmental defects and tumors. Identifying and characterizing novel components of the JNK signaling pathway to enhance and refine its network hold significant scientific and clinical importance for the prevention and treatment of associated cancers. This study utilized the model organism Drosophila and employed multidisciplinary approaches encompassing genetics, developmental biology, biochemistry, and molecular biology to investigate the interplay between Tip60 and the JNK signaling pathway, and elucidated its regulatory mechanisms. Our findings suggest that loss of Tip60 acetyltransferase activity results in JNK signaling pathway activation and subsequent induction of JNK-dependent apoptosis. Genetic epistasis analysis reveals that Tip60 acts downstream of JNK, paralleling with the transcription factor FOXO. The biochemical results confirm that Tip60 can bind to FOXO and acetylate it. Introduction of human Tip60 into Drosophila effectively mitigates apoptosis induced by JNK signaling activation, underscoring conserved regulatory role of Tip60 in the JNK signaling pathway from Drosophila to humans. This study further enhances our understanding of the regulatory network of the JNK signaling pathway. By revealing the role and mechanism of Tip60 in JNK-dependent apoptosis, it unveils new insights and potential therapeutic avenues for preventing and treating associated cancers.


Assuntos
Apoptose , Proteínas de Drosophila , Fatores de Transcrição Forkhead , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Drosophila/genética , Drosophila/metabolismo , Sistema de Sinalização das MAP Quinases , Humanos , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética
15.
Int Ophthalmol ; 44(1): 133, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480634

RESUMO

PURPOSE: To investigate the expression of nuclear receptor subfamily 1 group D member 1 (NR1D1) and nuclear receptor subfamily 2 group E Member 3 (NR2E3) in retinoblastoma (RB) and their correlation with the clinical and pathological features of RB. METHODS: Immunohistochemical (IHC) assays were performed to detect and evaluate the expression levels of NR1D1 and NR2E3 in paraffin-embedded tissue samples. The relationship between the expression levels and clinicopathological characteristics of RB patients was analyzed using the χ2 test or Fisher exact test. RESULTS: A total of 51 RB patients were involved in this research. The expression levels of NR1D1 (P = 0.004) and NR2E3 (P = 0.024) were significantly lower in RB tumor tissues than in normal retina. The expression levels of NR1D1 and NR2E3 were less positive in RB patients with advanced stages (P = 0.007, P = 0.015), choroidal infiltration (P = 0.003, P = 0.029), and optic nerve infiltration (P = 0.036, P = 0.003). In addition, a low expression level of NR2E3 was associated with high-risk pathology (P = 0.025) and necrosis (P = 0.035) of RB tissues. CONCLUSION: The expression levels of NR1D1 and NR2E3 were decreased in RB and closely associated with the clinical stage and high invasion of the disease. These findings provide new insights into the mechanism of RB progression and suggest that NR1D1 and NR2E3 could be potential targets for treatment strategies.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/patologia , Neoplasias da Retina/diagnóstico , Receptores Nucleares Órfãos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares
16.
Cytotherapy ; 25(12): 1361-1369, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37725031

RESUMO

BACKGROUND AIMS: Cell therapy is a promising treatment method that uses living cells to address a variety of diseases and conditions, including cardiovascular diseases, neurologic disorders and certain cancers. As interest in cell therapy grows, there is a need to shift to a more efficient, scalable and automated manufacturing process that can produce high-quality products at a lower cost. METHODS: One way to achieve this is using non-invasive imaging and real-time image analysis techniques to monitor and control the manufacturing process. This work presents a machine learning-based image analysis pipeline that includes semantic segmentation and anomaly detection capabilities. RESULTS/CONCLUSIONS: This method can be easily implemented even when given a limited dataset of annotated images, is able to segment cells and debris and can identify anomalies such as contamination or hardware failure.


Assuntos
Aprendizado de Máquina , Semântica , Processamento de Imagem Assistida por Computador/métodos
17.
Pharmacol Res ; 191: 106761, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028777

RESUMO

Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.


Assuntos
Isquemia Encefálica , Membranas Mitocondriais , Animais , Humanos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais , Mamíferos
18.
J Org Chem ; 88(6): 3802-3807, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36822154

RESUMO

The organocatalytic asymmetric Morita-Baylis-Hillman (MBH) reaction of isatin derivatives with various vinyl sulfones is disclosed. Chiral sulfone-containing 3-hydroxyoxindoles were produced in good to high yields and with good to high ee's. This report displays an unprecedented example to apply activated alkenes with sulfone moiety other than carbonyl groups in asymmetric MBH reactions and provides an efficient strategy to incorporate the sulfone functional group for the synthesis of chiral 3-hydroxyoxindoles.

19.
J Nat Prod ; 86(1): 119-130, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36579935

RESUMO

Nine new sesquiterpenes, hyperhubeins A-I (1-9), and 14 known analogues (10-23) were isolated from the aerial portions of Hypericum hubeiense. Their structures and absolute configurations were determined unambiguously via spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Compounds 1-3 possess an unprecedented sesquiterpene carbon skeleton. Further, a plausible biosynthetic pathway from farnesyl diphosphate (FPP) is proposed. The isolated phytochemicals were evaluated for neuroprotective and anti-neuroinflammatory properties in vitro. Compounds 1, 2, 5-8, 14, and 21 displayed notable neuroprotective activity against hydrogen peroxide (H2O2)-induced lesions in PC-12 cells at 10 µM. Additionally, compounds 1, 2, 12, and 13 exhibited inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cells, with their IC50 values ranging from 4.92 to 6.81 µM. Possible interactions between these bioactive compounds and inducible nitric oxide synthase (iNOS) were predicted via molecular docking. Moreover, Western blotting indicated that compound 12 exerted anti-neuroinflammatory activity by suppressing LPS-stimulated expression of toll-like receptor-4 (TLR-4) and inhibiting consequent activation of nuclear factor-kappa-B (NF-κB) signaling.


Assuntos
Hypericum , Sesquiterpenos , Anti-Inflamatórios/química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Microglia/metabolismo , Dicroísmo Circular , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo
20.
World J Surg Oncol ; 21(1): 16, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658564

RESUMO

BACKGROUND: Some studies have pointed out that a wide resection margin can improve the prognosis of intrahepatic cholangiocarcinoma, but some researchers disagree and believe that a wide margin may increase complications. The optimal margin length of intrahepatic cholangiocarcinoma is controversial. METHOD: The literature was searched in PubMed, MedLine, Embase, the Cochrane Library, and Web of Science until December 31, 2021, to evaluate the postoperative outcomes of patients with different margin width after resection. Odds ratios (ORs) with 95% confidence intervals were used to determine the effect size. RESULT: A total of 11 articles were included in this meta-analysis, including 3007 patients. The narrow group had significantly lower 1-, 3-, and 5-year overall survival rates and recurrence-free survival rates than the wide group. Postoperative morbidity and prognostic factors were also evaluated. CONCLUSION: A resection margin width of over 10 mm is recommended in intrahepatic cholangiocarcinoma patients, especially in patients with negative lymph node and early tumor stage. When the resection margin width cannot be greater than 10 mm, we should ensure that the resection margin width is greater than 5 mm.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Margens de Excisão , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Prognóstico , Hepatectomia , Ductos Biliares Intra-Hepáticos/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA