Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616119

RESUMO

The present contribution aims to enhance solar cells' performance via the development of advanced luminescent down-shifting based on encapsulated nanostructured perovskite materials. Here, thin films of inorganic lead halide (CsPbBr3) perovskite nanocrystal luminophores were synthetized, by hot-injection, deposited on glass substrates by spin-coating, and encapsulated with parylene type C, via chemical vapor deposition, to protect and stabilize the films. The optical properties of these thin films were characterized by absorption, emission and 2D contour spectra, their structure by X-ray diffraction and X-ray photoelectron spectroscopy, and the morphology by Scanning Transmission Electron microscopy. I-V curve and spectral response nanocrystalline silicon photovoltaic (nc-Si:H PV) cells were studied in the absence and presence of the perovskite and parylene luminescent down-shifting layers. The incorporation of the CsPbBr3 nanocrystals and their encapsulation with the parylene type C polymeric coating led to an increase in the current generated and the spectral response of the PV cells in the regime of the nanocrystals' fluorescence emission. A 3.1% increase in the short circuit current density and a 5.6% increase in the power conversion efficiency were observed.

2.
Methods Appl Fluoresc ; 8(2): 024004, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995792

RESUMO

Metal clusters confined inside zeolite materials display remarkable luminescent properties, making them very suitable as potential alternative phosphors in white LED applications. However, up to date, only single-color emitters have been reported for luminescent metal-exchanged zeolites. In this study, we synthesized and characterized white emitting silver-sulfur zeolites, which show a remarkable color tunability upon the incorporation of silver species in highly luminescent sulfur-zeolites. Via a combined steady-state and time-resolved photoluminescence spectroscopy characterization, we suggest that the observed luminescence and tunability arise from the presence of two different species. The first associated to an orange-red emitting silver cluster (Ag-CL), whereas the second is related to a blue-white emitting S-Ag-species. The relative contribution of both luminescent species depends on the synthesis procedure. It was shown that the formation of the blue-white emitting S-Ag-species is favored upon a heat-treatment of the samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA