Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemistry ; 29(46): e202301639, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265227

RESUMO

A series of donor-π-acceptor-π-donor (D-π-A-π-D) compounds based on naphthalendiimide (NDI) and perylenediimide (PDI) central cores combined with triphenylamine and phenylcarbazole donor groups have been synthesized, characterized and tested in top-contact/bottom gate organic field-effect transistors (OFETs). The results showed high electron mobilities, up to 0.3 cm2 V-1 s-1 , in the case of NDI derivatives and moderate values of around 10-3  cm2 V-1 s-1 for PDI-based semiconductors. Quantum chemical calculations were performed in order to support the experimental data. The results suggest that adequate molecular characteristics and larger crystalline domains in NDI vs. PDI semiconducting films may be the reasons behind the enhanced electrical properties of NDI derivatives. Furthermore, when the lateral donor substituents are triphenylamine groups, the mobilities were slightly higher in comparison to phenylcarbazole donor groups due to an improved electron-donating character. Other characterization techniques, such as AFM, X-ray diffraction or spectroelectrochemistry, among others, have been performed to analyze supramolecular order, charge carriers' nature and stability, parameters closely related to charge transport characteristics.

2.
Chemistry ; 29(72): e202302476, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37788975

RESUMO

The functionalisation of carbon nanotubes has been instrumental in broadening its application field, allowing especially its use in biological studies. Although numerous covalent and non-covalent functionalisation methods have been described, the characterisation of the final materials has always been an added challenge. Among the various techniques available, Raman spectroscopy is one of the most widely used to determine the covalent functionalisation of these species. However, Raman spectroscopy is not a quantitative technique, and no studies are reported comparing its performance when the same number of functional groups are added but using completely different reactions. In this work, we have experimentally and theoretically studied the functionalisation of carbon nanotubes using two of the most commonly used reactions: 1,3-dipolar cycloaddition of azomethylene ylides and diazonium-based radical addition. The number of groups introduced onto the tubes by these reactions has been determined by different characterisation techniques. The results of this study support the idea that data obtained by Raman spectra are only helpful for comparing functionalisations produced using the same type of reaction. However, they should be carefully analysed when comparing functionalisations produced using different reaction types.

3.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834186

RESUMO

A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. In addition, DFT and TD-DFT calculations have been performed to gain more insights into the structural, energetic and photophysical properties of the E/Z isomers. Our results reveal that E/Z configurational isomerization upon irradiation is highly dependent on the stabilization of the E or Z isomers due to the formation of intramolecular H bonds and the electronic/steric effects intrinsically related to their structures. In addition, Raman spectroscopy is also used to confirm the molecular structural changes after the formation of hydrogen bonds in the isomers.


Assuntos
Análise Espectral Raman , Modelos Moleculares , Isomerismo , Espectroscopia de Ressonância Magnética , Teoria da Densidade Funcional
4.
J Am Chem Soc ; 143(4): 2164-2169, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442975

RESUMO

Ultralong organic phosphorescence holds great promise as an important approach for optical materials and devices. Most of phosphorescent organic molecules with long lifetimes are substituted with heavy atoms or carbonyl groups to enhance the intersystem crossing (ISC), which requires complicated design and synthesis. Here, we report a cyclization-promoted phosphorescence phenomenon by boosting ISC. N-butyl carbazole exhibits a phosphorescence lifetime (τp) of only 1.45 ms and a low phosphorescence efficiency in the solution state at 77 K due to the lack of efficient ISC. In order to promote its phosphorescence behavior, we explored the influence of conjugation. By linear conjugation of four carbazole units, possible ISC channels are increased so that a longer τp of 2.24 s is observed. Moreover, by cyclization, the energy gap between the singlet and triplet states is dramatically decreased to 0.04 eV for excellent ISC efficiency accompanied by increased rigidification to synergistically suppress the nonradiative decay, resulting in satisfactory phosphorescence efficiency and a prolonged τp to 3.41 s in the absence of any heavy atom or carbonyl group, which may act as a strategy to prepare ultralong phosphorescent organic materials by enhancing the ISC and rigidification.

5.
Chemistry ; 27(17): 5509-5520, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33474741

RESUMO

This work describes the synthesis and properties of a dicyanomethylene-substituted indolo[3,2-b]carbazole diradical ICz-CN. This quinoidal system dimerises almost completely to (ICz-CN)2 , which contains two long C(sp3 )-C(sp3 ) σ-bonds between the dicyanomethylene units. The minor open-shell ICz-CN component in the solid-state mixture was identified by EPR spectroscopy. Cyclic voltammetry and UV-visible spectroelectrochemical data, as well as comparison with reference monomer ICz-Br reveal that the nature of the one-electron oxidation of (ICz-CN)2 at ambient temperature and ICz-CN at elevated temperature is very similar in all these compounds due to the prevailing localization of their HOMO on the ICz backbone. The peculiar cathodic behaviour reflects the co-existence of (ICz-CN)2 and ICz-CN. The involvement of the dicyanomethylene groups stabilizes the close-lying LUMO and LUMO+1 of (ICz-CN)2 and especially ICz-CN compared to ICz-Br, resulting in a distinctive cathodic response at low overpotentials. Differently from neutral ICz-CN, its radical anion and dianion are remarkably stable under ambient conditions. The UV/Vis(-NIR) electronic transitions in parent (ICz-CN)2 and ICz-CN and their different redox forms have been assigned convincingly with the aid of TD-DFT calculations. The σ-bond in neutral (ICz-CN)2 is cleaved in solution and in the solid-state upon soft external stimuli (temperature, pressure), showing a strong chromism from light yellow to blue-green. Notably, in the solid state, the monomeric diradical species is predominantly formed under high hydrostatic pressure (>1 GPa).

6.
Phys Chem Chem Phys ; 23(33): 18068-18077, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34388230

RESUMO

In this study, the theoretical and experimental results on the molecular structure and reactivity of the plant flavonoids naringenin chalcone and naringenin are reported. UV-vis and Raman spectra were recorded and their main bands have been assigned theoretically. Moreover, the analysis of the naringenin chalcone-naringenin cyclization-isomerization reaction and the formation of homodimers and heterodimers have been performed within a DFT framework. The presence of H-bonded water networks is mandatory to make the cyclization energetically suitable, suggesting that this equilibrium will occur in an aqueous intracellular environment rather than in the extracellular and hydrophobic plant cuticles. Additionally, the preferential formation of homodimers stabilized by π-π stacking that will interact with other dimers by H-bonding over the formation of naringenin chalcone-naringenin heterodimers is also proposed in a hydrophobic environment. These results give a plausible model to explain how flavonoids are located within the cuticle molecular arrangement.


Assuntos
Flavanonas/química , Teoria da Densidade Funcional , Dimerização , Estrutura Molecular , Estereoisomerismo
7.
Phys Chem Chem Phys ; 23(46): 26534-26546, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807964

RESUMO

A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[c][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4-b]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor-acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor-acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor-acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO-LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor-acceptor interactions and their application to conjugated materials.

8.
J Am Chem Soc ; 142(40): 17147-17155, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32911933

RESUMO

Two new luminophore polymorphs of 4-bromo-7-(4-nonylphenyl)benzo[c][1,2,5]thiadiazole (1α and 1ß) exhibiting different color emissions, which switch into each other in response to shear force and solvent vapors, are presented and their X-ray structure is determined. Supramolecular organic framework topology (SOFT) studies on the two polymorphic structures led us to conclude that the mechanochromic phase transformation can be explained on the basis of modifications in their respective topological nets: mab and pcu for 1α and 1ß, respectively, as a result of the breaking and restoration of a number of weak supramolecular interactions. The color changes accompanying this transformation have been rationalized with the help of time-dependent density functional theory. We firmly believe that our findings will inspire future research on the design of novel stimuli-responsive organic materials with switchable properties based on their supramolecular interactions by establishing clear SOFT-property relationships.

9.
J Am Chem Soc ; 142(9): 4329-4340, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32048836

RESUMO

Unpaired electrons of organic radicals can offer high electrical conductivity without doping, but they typically suffer from low stability. Herein, we report two organic diradicaloids based on quinoidal oligothiophene derivative (QOT), that is, BTICN and QTICN, with high stability and conductivity by employing imide-bridged fused molecular frameworks. The attachment of a strong electron-withdrawing imide group to the tetracyano-capped QOT backbones enables extremely deeply aligned LUMO levels (from -4.58 to -4.69 eV), cross-conjugated diradical characters, and remarkable ambient stabilities of the diradicaloids with half-lives > 60 days, which are among the highest for QOT diradicals and also the widely explored polyaromatic hydrocarbon (PAH)-based diradicals. Specifically, QTICN based on a tetrathiophene imide exhibits a cross-conjugation assisted self-doping in the film state as revealed by XPS and Raman studies. This property in combination with its ordered packing yields a high electrical conductivity of 0.34 S cm-1 for the QTICN films with substantial ambient stability, which is also among the highest values in organic radical-based undoped conductive materials reported to date. When used as an n-type thermoelectric material, QTICN shows a promising power factor of 1.52 uW m-1 K-2. Our results not only provide new insights into the electron conduction mechanism of the self-doped QOT diradicaloids but also demonstrate the great potential of fused quinoidal oligothiophene imides in developing stable diradicals and high-performance doping-free n-type conductive materials.

10.
Phys Chem Chem Phys ; 22(4): 2283-2294, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31922173

RESUMO

We report the synthesis and characterization of a novel series of push-pull chromophores bearing 1D linear and ß-branched thiophenes as π-conjugated spacers between a 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline electron donor unit and dicyano- and tricyanovinylene electron acceptor groups. The effect of the introduction of ß-thiophenes on the linear and nonlinear (NLO) optical properties as well as electrochemical and thermal data is studied in detail by performing a comparative study between the branched and 1D linear systems. In addition, a parallel DFT computational study is used to evaluate structure-property relationships. The non-linear optical behavior of the molecules both in solution and in solid state as electro-optic (EO) films using a guest-host approach shows very promising performance for electro-optic applications with high molecular first hyperpolarizabilities (µß) of 4840 × 10-48 esu and electro-optic coefficients r33 reaching 650 pm V-1. One highlight is that the electro-optic films of the ß-branched chromophores are superior in terms of thermal stability in device operation as measured by a transmissive modified reflective Teng-Man method. This work provides guidelines for the design of improved electro-optic materials including ß-branched chromophores which could be useful for practical EO applications, where both enhanced ß and r33 values together with chemical and thermal stability are necessary.

11.
Chemistry ; 24(14): 3576-3583, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29271517

RESUMO

The synthesis, self-assembly, and semiconducting properties of a series of disk-like truxenone derivatives, functionalized with three peripheral long alkyl chains, either directly attached or distanced by linking phenyl or ethynyl groups, are reported. The strategy of distancing the alkyl chains from the central aromatic cores induces in these discotics well-ordered columnar assemblies and has a favorable effect on their charge-carrier mobility. Electron mobility values above 1 cm2 V-1 S-1 were determined for a truxenone functionalized with three peripheral decynyl chains by means of the space charge-limited current technique. DFT calculations help to rationalize the high mobility values found for these new truxenone-based systems, indicating efficient intermolecular electronic couplings (fostered by a favorable stacking configuration) and moderate intramolecular reorganization energies for electrons in the origin of such high mobilities.

12.
Chemistry ; 23(55): 13776-13783, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28749543

RESUMO

This work reports on a quinodimethane-type molecule, 2,7-dicyanomethylene-9-(2-ethylhexyl)carbazole (1), one of the shortest π-conjugated biradicaloids reported to be stable in solution under ambient conditions. This carbazole-based quinoidal precursor is able to form a macrocyclic σ-bonded tetramer (2). The resolved single-crystal X-ray structure of tetramer 2 shows that four molecules of 1 are linked together through four long (CN)2 C-C(CN)2 bonds (1.631 Å) resulting from coupling of the unpaired electrons in biradicaloid 1. Dynamic interconversion between monomer 1 and cyclophane tetramer 2 is achieved by reversible cleavage and recovery of the four (CN)2 C-C(CN)2 bonds upon soft external stimuli (light absorption, temperature and pressure), which is accompanied by significant color changes. These novel photo-, thermo-, and mechanochromic properties expand the versatility of π-conjugated biradicaloid compounds as novel functional materials that, in combination with spin chemistry and dynamic covalent chemistry, can be relevant in molecular machines, sensors, and switches.

13.
Chemistry ; 22(38): 13643-52, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27430480

RESUMO

Inversion of the connections of amidine linkers combined with controlled oligothiophene chain catenation in oligothiophene-naphthalimide assemblies provides an efficient method to tune the HOMO and LUMO values in this type of assemblies. This modification also suppresses the intramolecular charge transfer (ICT) band normally found in this type of derivatives, also delocalizing the frontier molecular orbitals over the whole conjugated skeleton. The resultant assemblies were used in the fabrication of field-effect transistors, which showed well-balanced ambipolar transport.

14.
Chemistry ; 22(30): 10651-60, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27320301

RESUMO

We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed).

15.
Beilstein J Org Chem ; 11: 335-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815088

RESUMO

The electrocopolymerization of 3,4-ethylenedioxythiophene (EDOT) with the branched thiophene building block 2,2':3',2″-terthiophene (3T) is presented as a versatile route to functional polymer films. Comparisons to blend systems of the respective homopolymers PEDOT and P3T by in situ spectroelectrochemistry and Raman spectroscopy prove the successful copolymer formation and the access to tailored redox properties and energy levels. The use of EDOT-N3 as co-monomer furthermore allows modifications of the films by polymer analogous reactions. Here, we exemplarily describe the post-functionalization with ionic moieties by 1,3-dipolar cycloaddition ("click"-chemistry) which allows to tune the surface polarity of the copolymer films from water contact angles of 140° down to 40°.

16.
Chemistry ; 20(33): 10351-9, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25043826

RESUMO

Radical cations of a heptathienoacene α,ß-substituted with four n-decyl side groups (D4T7(.) (+) ) form exceptionally stable π-dimer dications already at ambient temperature (Chem. Comm. 2011, 47, 12622). This extraordinary π-dimerization process is investigated here with a focus on the ultimate [D4T7(.) (+) ]2 π-dimer dication and yet-unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π-dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one-electron oxidation: 1) a different transient conformation of the ultimate [D4T7(.) (+) ]2 π-dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 (.) (+) π-dimer radical cations formed prior to the fully oxidized [D4T7]2 (.) (+) π-dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems.

17.
Phys Chem Chem Phys ; 16(45): 24841-52, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25319050

RESUMO

Infrared (IR) absorption and vibrational Raman spectra of a family of branched oligothiophenes have been determined experimentally as well as theoretically. The molecular spectra have been compared to those of the linear analogues, with identification made of spectral features due to structural properties that are valued in organic solar cell applications. The theoretical spectra have been obtained through a newly developed method in which individual conformer spectra, calculated at the time-dependent DFT level in this work, are weighted by statistics extracted from classical molecular dynamics trajectories. The agreement with experiment for the resulting averaged spectra is at least as good as, and often better than, what is observed for Boltzmann-weighted spectra. As the weights are available before the costly step of spectrum calculation, the method has the additional advantage of enabling efficient approximations. For simulating the molecular dynamics of the studied α,ß-linked thiophenes and 2-methylthiophenes, high quality parameters have been derived for the CHARMM force field. Furthermore, the temperature dependence of the IR and Raman spectra has been investigated, both experimentally and theoretically.

18.
J Chem Phys ; 140(5): 054706, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511967

RESUMO

A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

19.
Chemistry ; 19(50): 17165-71, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24222428

RESUMO

This article investigates the excited and charged states of three branched oligothiophenes with methyl-thienyl side groups as models to promote 3D arrangements. A comparison with the properties of the parent systems, linear all-α,α-oligothiophenes, is proposed. A wide variety of spectroscopic methods (i.e., absorption, emission, triplet-triplet transient absorption, and spectroelectrochemistry) in combination with DFT calculations have been used for this purpose. Whereas the absorption spectra are slightly blueshifted upon branching, both the emission spectra and triplet-triplet absorption spectra are moderately redshifted; this indicates a larger contribution of the ß-linked thienyl groups in the delocalization of the S1 and T1 states rather than into the S0 state. The delocalization through the α,ß-conjugated path was found to be crucial for the stabilization of the trication species in the larger branched systems, whereas the linear sexithiophene homologue can only be stabilized up to the dication species.

20.
Langmuir ; 29(49): 15463-73, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24266499

RESUMO

The potential of 2,2';3,2″-terthiophene (3T) as branching units in 3D copolymers is presented with EDOT as an example comonomer. Branched EDOT/3T polythiophenes were prepared by electropolymerization, and their electrochemical and optical properties are discussed. Two different approaches were employed: (i) the direct electropolymerization of a novel branched thiophene monomer (3TE3) consisting of a 3T core that contains three outer EDOT end groups and (ii) the electrochemical copolymerization of a EDOT/3T mixture in different ratios from [1:1] to [1:10]. Cyclic voltammetric and vis spectrometric experiments show that the EDOT content within the polymer has a strong influence on the electronic properties of the material: with increasing EDOT content, the HOMO-LUMO gap is decreased. To prove copolymer formation of EDOT and 3T, chemically synthesized reference copolymers of EDOT and 3T were prepared by oxidative coupling using FeCl3, and their optical and electronic properties were compared to those of the electrodeposited films. In addition, the copolymer formation is indicated by the comparison of the electrochemical and spectroscopic results with those of the homopolymers P3T and PEDOT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA