Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 29(3): e01866, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706569

RESUMO

Estimating α-diversity and species distributions provides baseline information to understand factors such as biodiversity loss and erosion of ecosystem services. Yet, species surveys typically cover a small portion of any country's landmass. Public, global databases could help, but contain biases. Thus, the magnitude of bias should be identified and ameliorated, the value of integration determined, and application to current policy issues illustrated. The ideal integrative approach should be powerful, flexible, efficient, and conceptually straightforward. We estimated distributions for >6,000 species, integrating species sightings (S) from the Global Biodiversity Information Facility (GBIF), systematic survey data (S2 ), and "bias-adjustment kernels" (BaK) using spatial and species trait databases (S2 BaK). We validated our approach using both locational and species holdout sets, and then applied our predictive model to Panama. Using sightings alone (the most common approach) discriminated relative probabilities of occurrences well (area under the curve [AUC] = 0.88), but underestimated actual probabilities by ~4,000%, while using survey data alone omitted over three-quarters of the >6,000 species. Comparatively, S2 BaK had no systematic underestimation, and substantially stronger discrimination (AUC = 0.96) and predictive power (deviance explained = 47%). Our model suggested high diversity (~200% countrywide mean) where urban development is projected to occur (the Panama Canal watershed) and also suggested this is not due to higher sampling intensity. However, portions of the Caribbean coast and eastern Panama (the Darién Gap) were even higher, both for total plant biodiversity (~250% countrywide mean), and CITES listed species. Finally, indigenous territories appeared half as diverse as other regions, based on survey observations. However, our model suggested this was largely due to site selection, and that richness in and out of indigenous territories was roughly equal. In brief, we provide arguably the best estimate of countrywide plant α-diversity and species distributions in the Neotropics, and make >6,000 species distributions available. We identify regions of overlap between development and high biodiversity, and improve interpretation of biodiversity patterns, including for policy-relevant CITES species, and locations with limited access (i.e., indigenous territories). We derive a powerful, flexible, efficient and simple estimation approach for biodiversity science.


Assuntos
Biodiversidade , Ecossistema , Região do Caribe , Panamá , Plantas
2.
Glob Chang Biol ; 24(2): e496-e510, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28906052

RESUMO

Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , África Ocidental , Ciclo do Carbono , Chuva , Madeira
3.
Nat Commun ; 15(1): 3158, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605006

RESUMO

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Gana , Carbono , Ecossistema , Clima Tropical
4.
New Phytol ; 189(4): 978-987, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20958305

RESUMO

• Linking tree diversity to carbon storage can provide further motivation to conserve tropical forests and to design carbon-enriched plantations. Here, we examine the role of tree diversity and functional traits in determining carbon storage in a mixed-species plantation and in a natural tropical forest in Panama. • We used species richness, functional trait diversity, species dominance and functional trait dominance to predict tree carbon storage across these two forests. Then we compared the species ranking based on wood density, maximum diameter, maximum height, and leaf mass per area (LMA) between sites to reveal how these values changed between different forests. • Increased species richness, a higher proportion of nitrogen fixers and species with low LMA increased carbon storage in the mixed-species plantation, while a higher proportion of large trees and species with high LMA increased tree carbon storage in the natural forest. Furthermore, we found that tree species varied greatly in their absolute and relative values between study sites. • Different results in different forests mean that we cannot easily predict carbon storage capacity in natural forests using data from experimental plantations. Managers should be cautious when applying functional traits measured in natural populations in the design of carbon-enriched plantations.


Assuntos
Biodiversidade , Carbono/metabolismo , Ecossistema , Árvores/metabolismo , Clima Tropical , Luz , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Especificidade da Espécie , Árvores/efeitos da radiação
5.
Ecology ; 91(12): 3664-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302837

RESUMO

A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.


Assuntos
Ecossistema , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Clima Tropical , Biomassa , Folhas de Planta/fisiologia , Sementes/fisiologia
6.
Nat Commun ; 4: 1340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299890

RESUMO

Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km(2), we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests.


Assuntos
Ecossistema , Árvores/fisiologia , Animais , Biomassa , Humanos , Modelos Biológicos , Especificidade da Espécie , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA