RESUMO
The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.
Assuntos
Doença Aguda , Doença Crônica , Genes Bacterianos , Oxigênio , Infecções por Pseudomonas , Pseudomonas aeruginosa , RNA Bacteriano , Animais , Humanos , Oxigênio/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fibrose Cística/microbiologia , Ferimentos e Lesões/microbiologia , Ubiquinona/biossíntese , Anaerobiose , Genes Bacterianos/genética , Sepse/complicações , Sepse/microbiologiaRESUMO
Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.
Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Animais , Virulência/efeitos dos fármacos , Farmacorresistência Bacteriana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. In vivo biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. In vivo biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.
Assuntos
Biofilmes , Infecções , Humanos , Infecções/microbiologiaRESUMO
The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection.
Assuntos
Microbiota , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas , Pseudomonas aeruginosa , Infecções Estafilocócicas , Staphylococcus epidermidis , Cicatrização/genética , Infecção dos Ferimentos , Animais , Doença Crônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Talina/genética , Talina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/genética , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologiaRESUMO
Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.
Assuntos
Biofilmes , Pseudomonas aeruginosa , Colágeno , Polissacarídeos Bacterianos , ViscosidadeRESUMO
Proteases play an essential role in the four sequential but overlapping phases of wound healing: hemostasis, inflammation, proliferation, and remodeling. In chronic wounds, excessive protease secretion damages the newly formed extracellular matrix, thereby delaying or preventing the normal healing process. Peptide-based fluorogenic sensors provide a visual platform to sense and analyze protease activity through changes in the fluorescence intensity. Here, we have developed an integrated microfluidic chip coated with multilayered fluorogenic nanofilms that can directly monitor protease activity. Fluorogenic protease sensors were chemically conjugated to polymer films coated on the surface of parallel microfluidic channels. Capillary flow layer-by-layer (CF-LbL) was used for film assembly and combined with subsequent sensor modification to establish a novel platform sensing technology. The benefits of our platform include facile fabrication and processing, controllable film nanostructure, small sample volume, and high sensitivity. We observed increased fluorescence of the LbL nanofilms when they were exposed to model recombinant proteases, confirming their responsiveness to protease activity. Increases in the nanofilms' fluorescence intensity were also observed during incubation with liquid extracted from murine infected wounds, demonstrating the potential of these films to provide real-time, in situ information about protease activity levels.
Assuntos
Nanoestruturas , Animais , Matriz Extracelular , Camundongos , Peptídeo Hidrolases , Polímeros , CicatrizaçãoRESUMO
Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.
Assuntos
Coagulase/fisiologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Biofilmes/crescimento & desenvolvimento , Coagulação Sanguínea , Coagulase/genética , Humanos , Microbiota/genética , Microbiota/fisiologia , Modelos Biológicos , Mutação , Infecções Estafilocócicas/sangue , VirulênciaRESUMO
Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.
Assuntos
Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcriptoma/genética , Animais , Biofilmes , Fibrose Cística , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Humanos , Aprendizado de Máquina , Camundongos , Pseudomonas aeruginosa/isolamento & purificação , Percepção de Quorum/genética , Máquina de Vetores de Suporte , Infecção da Ferida Cirúrgica/metabolismo , Infecção da Ferida Cirúrgica/microbiologiaRESUMO
Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 107 colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 107 CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.
Assuntos
Infecção dos Ferimentos , Animais , Bactérias , Biofilmes , Camundongos , Imagem Óptica , Sistemas Automatizados de Assistência Junto ao Leito , Infecção dos Ferimentos/diagnósticoRESUMO
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality worldwide. To survive in both the environment and the host, P. aeruginosa must cope with redox stress. In P. aeruginosa, a primary mechanism for protection from redox stress is the antioxidant glutathione (GSH). GSH is a low-molecular-weight thiol-containing tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) that can function as a reversible reducing agent. GSH plays an important role in P. aeruginosa physiology and is known to modulate several cellular and social processes that are likely important during infection. However, the role of GSH biosynthesis during mammalian infection is not well understood. In this study, we created a P. aeruginosa mutant defective in GSH biosynthesis to examine how loss of GSH biosynthesis affects P. aeruginosa virulence. We found that GSH is critical for normal growth in vitro and provides protection against hydrogen peroxide, bleach, and ciprofloxacin. We also studied the role of P. aeruginosa GSH biosynthesis in four mouse infection models, including the surgical wound, abscess, burn wound, and acute pneumonia models. We discovered that the GSH biosynthesis mutant was slightly less virulent in the acute pneumonia infection model but was equally virulent in the three other models. This work provides new and complementary data regarding the role of GSH in P. aeruginosa during mammalian infection.
Assuntos
Glutationa/biossíntese , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções dos Tecidos Moles/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Viabilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimentoRESUMO
Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.
Assuntos
Pseudomonas aeruginosa , Infecção dos Ferimentos/microbiologia , Animais , Camundongos , Infecções por Pseudomonas , VirulênciaRESUMO
Biofilms are communities of bacteria embedded in a polymeric matrix which are found in infections and in environments outside the body. Breaking down the matrix renders biofilms more susceptible to physical disruption and to treatments such as antibiotics. Different species of bacteria, and different strains within the same species, produce different types of matrix polymers. This suggests that targeting specific polymers for disruption may be more effective than nonspecific approaches to disrupting biofilm matrixes. In this study, we treated Pseudomonas aeruginosa biofilms with enzymes that are specific to different matrix polymers. We measured the resulting alteration in biofilm mechanics using bulk rheology and changes in structure using electron microscopy. We find that, for biofilms grown in vitro, the effect of enzymatic treatment is greatest when the enzyme is specific to a dominant matrix polymer. Specifically matched enzymatic treatment tends to reduce yield strain and yield stress and increase the rate of biofilm drying, due to increased diffusivity as a result of network compromise. Electron micrographs qualitatively suggest that well-matched enzymatic treatments reduce long-range structure and shorten connecting network fibers. Previous work has shown that generic glycoside hydrolases can cause dispersal of bacteria from in vivo and ex vivo biofilms into a free-swimming state, and thereby make antibiotic treatment more effective. For biofilms grown in wounded mice, we find that well-matched treatments that result in the greatest mechanical compromise in vitro induce the least dispersal ex vivo. Moreover, we find that generic glycoside hydrolases have no measurable effect on the mechanics of biofilms grown in vitro, while previous work has shown them to be highly effective at inducing dispersal in vivo and ex vivo. This highlights the possibility that effective approaches to eradicating biofilms may depend strongly on the growth environment.
Assuntos
Polímeros , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Biofilmes , CamundongosRESUMO
Polymicrobial interactions are complex and can influence the course of an infection, as is the case when two or more species exhibit a synergism that produces a disease state not seen with any of the individual species alone. Cell-to-cell signaling is key to many of these interactions, but little is understood about how the host environment influences polymicrobial interactions or signaling between bacteria. Chronic wounds are typically polymicrobial, with Staphylococcus aureus and Pseudomonas aeruginosa being the two most commonly isolated species. While P. aeruginosa readily kills S. aureusin vitro, the two species can coexist for long periods together in chronic wound infections. In this study, we investigated the ability of components of the wound environment to modulate interactions between P. aeruginosa and S. aureus We demonstrate that P. aeruginosa quorum sensing is inhibited by physiological levels of serum albumin, which appears to bind and sequester some homoserine lactone quorum signals, resulting in the inability of P. aeruginosa to produce virulence factors that kill S. aureus These data could provide important clues regarding the virulence of P. aeruginosa in albumin-depleted versus albumin-rich infection sites and an understanding of the nature of friendly versus antagonistic interactions between P. aeruginosa and S. aureus.
Assuntos
Antibiose/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Albumina Sérica/metabolismo , Staphylococcus aureus/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Humanos , Ligação ProteicaRESUMO
Medical science is pitted against an ever-increasing rise in antibiotic tolerant microorganisms. Concurrently, during the past decade, biofilms have garnered much attention within research and clinical practice. Although the significance of clinical biofilms is becoming very apparent, current methods for diagnostics and direction of therapy plans in many hospitals do not reflect this knowledge; with many of the present tools proving to be inadequate for accurately mimicking the biofilm phenomenon. Based on current findings, we address some of the fundamental issues overlooked by clinical labs: the paradigm shifts that need to occur in assessing chronic wounds; better simulation of physiological conditions in vitro; and the importance of incorporating polymicrobial populations into biofilm models. In addition, this review considers using a biofilm relevant in vitro model for cultivating and determining the antibiotic tolerance and susceptibility of microorganisms associated with chronic wounds. This model presents itself as a highly rapid and functional tool that can be utilized by hospitals in an aim to improve bedside treatments.
Assuntos
Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Infecção dos Ferimentos/microbiologia , Ferimentos e Lesões/microbiologia , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/microbiologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologiaRESUMO
Monitoring patients with burn wounds for infection is standard practice because failure to rapidly and specifically identify a pathogen can result in poor clinical outcomes, including death. Therefore, a method that facilitates detection and identification of pathogens in situ within minutes of biopsy would be a significant benefit to clinicians. Mass spectrometry is rapidly becoming a standard tool in clinical settings, capable of identifying specific pathogens from complex samples. Imaging mass spectrometry (IMS) expands the information content by enabling spatial resolution of biomarkers in tissue samples as in histology, without the need for specific stains/antibodies. Herein, a murine model of thermal injury was used to study infection of burn tissue by Pseudomonas aeruginosa. This is the first use of IMS to detect P. aeruginosa infection in situ from thermally injured tissue. Multiple molecular features could be spatially resolved to infected or uninfected tissue. This demonstrates the potential use of IMS in a clinical setting to aid doctors in identifying both presence and species of pathogens in tissue.
Assuntos
Biomarcadores/análise , Queimaduras/microbiologia , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Queimaduras/complicações , Queimaduras/patologia , Carboximetilcelulose Sódica/química , Modelos Animais de Doenças , Gelatina/química , Camundongos , Imagem Óptica , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologiaRESUMO
The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites with many microbes, including commensal streptococci such as Streptococcus gordonii (Sg). During infection, Sg promotes the virulence of Aa by producing its preferred carbon source, l-lactate, a phenomenon referred to as cross-feeding. However, as with many streptococci, Sg also produces high levels of the antimicrobial hydrogen peroxide (H2O2), leading to the question of how Aa deals with this potent antimicrobial during coinfection. Here, we show that Aa possesses two complementary responses to H2O2: a detoxification or fight response mediated by catalase (KatA) and a dispersion or flight response mediated by Dispersin B (DspB), an enzyme that dissolves Aa biofilms. Using a murine abscess infection model, we show that both of these responses are required for Sg to promote Aa virulence. Although the role of KatA is to detoxify H2O2 during coinfection, 3D spatial analysis of mixed infections revealed that DspB is required for Aa to spatially organize itself at an optimal distance (>4 µm) from Sg, which we propose allows cross-feeding but reduces exposure to inhibitory levels of H2O2. In addition, these behaviors benefit not only Aa but also Sg, suggesting that fight and flight stimulate the fitness of the community. These results reveal that an antimicrobial produced by a human commensal bacterium enhances the virulence of a pathogenic bacterium by modulating its spatial location in the infection site.
Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Catalase/metabolismo , Coinfecção/fisiopatologia , Glicosídeo Hidrolases/metabolismo , Streptococcus gordonii/metabolismo , Aggregatibacter actinomycetemcomitans/metabolismo , Animais , Coinfecção/microbiologia , Peróxido de Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Camundongos , Análise em Microsséries , VirulênciaRESUMO
Opportunistic infections caused by Pseudomonas aeruginosa can be acute or chronic. While acute infections often spread rapidly and can cause tissue damage and sepsis with high mortality rates, chronic infections can persist for weeks, months, or years in the face of intensive clinical intervention. Remarkably, this diverse infectious capability is not accompanied by extensive variation in genomic content, suggesting that the genetic capacity to be an acute or a chronic pathogen is present in most P. aeruginosa strains. To investigate the genetic requirements for acute and chronic pathogenesis in P. aeruginosa infections, we combined high-throughput sequencing-mediated transcriptome profiling (RNA-seq) and genome-wide insertion mutant fitness profiling (Tn-seq) to characterize gene expression and fitness determinants in murine models of burn and non-diabetic chronic wound infection. Generally we discovered that expression of a gene in vivo is not correlated with its importance for fitness, with the exception of metabolic genes. By combining metabolic models generated from in vivo gene expression data with mutant fitness profiles, we determined the nutritional requirements for colonization and persistence in these infections. Specifically, we found that long-chain fatty acids represent a major carbon source in both chronic and acute wounds, and P. aeruginosa must biosynthesize purines, several amino acids, and most cofactors during infection. In addition, we determined that P. aeruginosa requires chemotactic flagellar motility for fitness and virulence in acute burn wound infections, but not in non-diabetic chronic wound infections. Our results provide novel insight into the genetic requirements for acute and chronic P. aeruginosa wound infections and demonstrate the power of using both gene expression and fitness profiling for probing bacterial virulence.
Assuntos
Lesões Encefálicas/genética , Perfilação da Expressão Gênica , Pseudomonas aeruginosa/genética , Infecção da Ferida Cirúrgica/genética , Animais , Lesões Encefálicas/microbiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Infecções Oportunistas/genética , Infecções Oportunistas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecção da Ferida Cirúrgica/microbiologia , Fatores de Virulência/genéticaRESUMO
Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.
Assuntos
Coinfecção/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Sequência de Bases , DNA Bacteriano/genética , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Genes Bacterianos , Humanos , Masculino , Camundongos , Mutação , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Virulência/genéticaRESUMO
Diabetes affects 25.8 million people in the United States, or 8.3% of the population, and these numbers are even higher in developing countries. Diabetic patients are more susceptible to the development of chronic wounds with debilitating bacterial infections than nondiabetics. Previously, we compared the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause biofilm-associated infections in chronic wounds of diabetic and nondiabetic mice (C. Watters, K. DeLeon, U. Trivedi, J. A. Griswold, M. Lyte, K. J. Hampel, M. J. Wargo, and K. P. Rumbaugh, Med. Microbiol. Immunol. 202:131-141, 2013). Unexpectedly, we observed that insulin-treated diabetic mice had significantly more biofilm in their wounds, which correlated with higher antibiotic tolerance. Here, we investigated whether insulin treatment modulates the diabetic immune system to favor P. aeruginosa biofilm formation. Utilizing a murine chronic wound model, we found that DNA protected P. aeruginosa in the wounds of insulin-treated diabetic mice from antibiotic treatment. We also observed increased numbers of neutrophils, reduced numbers of macrophages, and increased cell death in the wounds of diabetic mice on insulin therapy. Taken together, these data suggest that high levels of lysed neutrophils in the wounds of diabetic mice on insulin, combined with fewer macrophages to remove the cellular debris, contribute to increased DNA levels, which enhance P. aeruginosa biofilms.
Assuntos
Biofilmes/crescimento & desenvolvimento , Diabetes Mellitus Experimental/imunologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Animais , Antibacterianos/farmacologia , Apoptose/fisiologia , Morte Celular/imunologia , Doença Crônica , DNA Bacteriano/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Farmacorresistência Bacteriana/imunologia , Feminino , Macrófagos/citologia , Camundongos , Testes de Sensibilidade Microbiana , Neutrófilos/citologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/fisiologia , Cicatrização/fisiologia , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/patologiaRESUMO
In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in wound infections, very little is known about their interspecies relationship. Evidence suggests that P. aeruginosa-S. aureus coinfections are more virulent than monoculture infection with either species; however, difficulties in growing these two pathogens together in vitro have hampered attempts to uncover the mechanisms involved. Here we describe a simple and clinically relevant in vitro wound model that supported concomitant growth of P. aeruginosa and S. aureus. We observed that the ability of P. aeruginosa and S. aureus to survive antibiotic treatment increased when they were grown together in planktonic cocultures and that antibiotic tolerance was further enhanced when they were grown together in the wound model. We attributed this enhanced tolerance to both the "host-derived" and "bacterium-derived" matrix components. Taken together, our data indicate that P. aeruginosa and S. aureus may benefit each other by coinfecting wounds and that the host-derived matrix may serve as important a role as the bacterium-derived matrix in protecting bacteria from some antibiotics.