Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(24): 6641-5, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21612234

RESUMO

Acidity calculations for some CH and NH superacids in 1,2-dichloroethane (DCE) were carried out using SMD and COSMO-RS continuum solvation models. After comparing the results of calculations with respective experimental pK(a) values it was found that the performance of SMD/M05-2X/6-31G* method is characterized by the mean unsigned error (MUE) of 0.5 pK(a) units and the slope of regression line of 0.915. The similar SMD/B3LYP/6-31G* approach was slightly less successful. The strong correlation over entire data set is confirmed by R(2) values of 0.990 and 0.984 for M05-2X and B3LYP functionals, respectively. The COSMO-RS method, while providing the value of the linear regression line slope similar to the corresponding values from SMD approach, characterized by rather loose correlation (R(2) = 0.823, MUE = 1.7 pK(a) units) between calculated and experimental pK(a) values in DCE solution.

2.
J Phys Chem A ; 113(21): 6206-12, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19413308

RESUMO

Absolute (nonrelative) pKa calculations for substituted phenols were carried out in nonaqueous media, demonstrating the predictive power of the integral equation formalism PCM method with a mean unsigned error of 0.6 pKa units for DMSO and 0.7 pKa units for MeCN at the B3LYP/6-31+G** level of theory combined with the scaled B3LYP/6-311+G** gas-phase data. At the same time, the correlation between the calculated and experimental pKa values yielded the value of the linear regression slope very close to unity for both DMSO and MeCN. Computation of pKa of neutral acids in nonaqueous solutions with a reasonable precision obviously depends on carefully tuned cavities, optimized for nonaqueous solutions. The ability of continuum solvation model to compensate charge escape from the cavity, which is prominent in the case of anions, is also required. And finally, good quality gas-phase data is essential to achieve required pKa precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA