RESUMO
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Assuntos
Neoplasias , Testículo , Gravidez , Animais , Humanos , Masculino , Feminino , Testículo/metabolismo , Placenta , Espermatogênese/genética , Reprodução , Neoplasias/genética , Neoplasias/metabolismo , Mamíferos , Poliploidia , Fertilidade/genéticaRESUMO
Finding out how cells prepare for fate change during differentiation commitment was our task. To address whether the constitutive pericentromere-associated domains (PADs) may be involved, we used a model system with known transcriptome data, MCF-7 breast cancer cells treated with the ErbB3 ligand heregulin (HRG), which induces differentiation and is used in the therapy of cancer. PAD-repressive heterochromatin (H3K9me3), centromere-associated-protein-specific, and active euchromatin (H3K4me3) antibodies, real-time PCR, acridine orange DNA structural test (AOT), and microscopic image analysis were applied. We found a two-step DNA unfolding after 15-20 and 60 min of HRG treatment, respectively. This behavior was consistent with biphasic activation of the early response genes (c-fos - fosL1/myc) and the timing of two transcriptome avalanches reported in the literature. In control, the average number of PADs negatively correlated with their size by scale-free distribution, and centromere clustering in turn correlated with PAD size, both indicating that PADs may create and modulate a suprachromosomal network by fusing and splitting a constant proportion of the constitutive heterochromatin. By 15 min of HRG treatment, the bursting unraveling of PADs from the nucleolus boundary occurred, coinciding with the first step of H3K4me3 chromatin unfolding, confirmed by AOT. The second step after 60 min of HRG treatment was associated with transcription of long noncoding RNA from PADs and peaking of fosL1/c-myc response. We hypothesize that the bursting of PAD clusters under a critical silencing threshold pushes the first transcription avalanche, whereas the destruction of the PAD network enables genome rewiring needed for differentiation repatterning, mediated by early response bivalent genes.
Assuntos
Neoplasias da Mama , Neuregulina-1 , Neoplasias da Mama/genética , Centrômero , Heterocromatina , HumanosRESUMO
Mitotic slippage (MS), the incomplete mitosis that results in a doubled genome in interphase, is a typical response of TP53-mutant tumors resistant to genotoxic therapy. These polyploidized cells display premature senescence and sort the damaged DNA into the cytoplasm. In this study, we explored MS in the MDA-MB-231 cell line treated with doxorubicin (DOX). We found selective release into the cytoplasm of telomere fragments enriched in telomerase reverse transcriptase (hTERT), telomere capping protein TRF2, and DNA double-strand breaks marked by γH2AX, in association with ubiquitin-binding protein SQSTM1/p62. This occurs along with the alternative lengthening of telomeres (ALT) and DNA repair by homologous recombination (HR) in the nuclear promyelocytic leukemia (PML) bodies. The cells in repeated MS cycles activate meiotic genes and display holocentric chromosomes characteristic for inverted meiosis (IM). These giant cells acquire an amoeboid phenotype and finally bud the depolyploidized progeny, restarting the mitotic cycling. We suggest the reversible conversion of the telomerase-driven telomere maintenance into ALT coupled with IM at the sub-telomere breakage sites introduced by meiotic nuclease SPO11. All three MS mechanisms converging at telomeres recapitulate the amoeba-like agamic life-cycle, decreasing the mutagenic load and enabling the recovery of recombined, reduced progeny for return into the mitotic cycle.
Assuntos
DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Telômero/metabolismo , Antibióticos Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo de DNA por Recombinação , Proteína Sequestossoma-1/metabolismo , Telomerase/metabolismo , Encurtamento do Telômero , Proteína 2 de Ligação a Repetições Teloméricas/metabolismoRESUMO
Organ-on-a-chip (OOC) is an innovative microfluidic device mimicking the structure and functionality of real tissue. OOCs typically involve cell culture with microfluidics to emulate the biological forces of different organ tissues and disease states, providing a next-generation experimental platform. When combined with simulated microgravity conditions, such as those produced by random positioning machines, they offer unique insights into disease processes. Microgravity has been shown to affect cellular behaviors, like proliferation and viability, though its influence on cell physiology is not fully explored. The primary objective of this study was to develop an OOC model with continuous flow under simulated microgravity. Cells cultured in static (non-continuous-flow) conditions exhibited clear growth reduction under microgravity conditions, showing more pronounced difference compared to continuous-flow conditions using an OOC setup. Although our results show that A549 cell viability under continuous flow decreased in microgravity compared to normogravity, this study demonstrates the successful development of a system capable of providing continuous flow in organ-on-a-chip (OOC) models within a random positioning machine.
RESUMO
BACKGROUND: Lung cancer remains a leading cause of cancer-related mortality globally. Although recent therapeutic advancements have provided targeted treatment approaches, the development of resistance and systemic toxicity remain primary concerns. Extracellular vesicles (EVs), especially those derived from mesenchymal stromal cells (MSC), have gained attention as promising drug delivery systems, offering biocompatibility and minimal immune responses. Recognizing the limitations of conventional 2D cell culture systems in mimicking the tumor microenvironment, this study aims to describe a proof-of-principle approach for using patient-specific organoid models for both lung cancer and normal lung tissue and the feasibility of employing autologous EVs derived from induced pluripotent stem cell (iPSC)-MSC in personalized medicine approaches. METHODS: First, we reprogrammed healthy fibroblasts into iPSC. Next, we differentiated patient-derived iPSC into branching lung organoids (BLO) and generated patient-matched lung cancer organoids (LCO) from patient-derived tumor tissue. We show a streamlined process of MSC differentiation from iPSC and EV isolation from iPSC-MSC, encapsulated with 0.07 µg/mL of cytotoxic agent cisplatin and applied to both organoid models. Cytotoxicity of cisplatin and cisplatin-loaded EVs was recorded with LDH and CCK8 tests. RESULTS: Fibroblast-derived iPSC showed a normal karyotype, pluripotency staining, and trilineage differentiation. iPSC-derived BLO showed expression of lung markers, like TMPRSS2 and MUC5A while patient-matched LCO showed expression of Napsin and CK5. Next, we compared the effects of iPSC-MSC derived EVs loaded with cisplatin against empty EVs and cisplatin alone in lung cancer organoid and healthy lung organoid models. As expected, we found a cytotoxic effect when LCO were treated with 20 µg/mL cisplatin. Treatment of LCO and BLO with empty EVs resulted in a cytotoxic effect after 24 h. However, EVs loaded with 0.07 µg/mL cisplatin failed to induce any cytotoxic effect in both organoid models. CONCLUSION: We report on a proof-of-principle pipeline towards using autologous or allogeneic iPSC-MSC EVs as drug delivery tests for lung cancer in future. However, due to the time and labor-intensive processes, we conclude that this pipeline might not be feasible for personalized approaches at the moment.
Assuntos
Cisplatino , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Neoplasias Pulmonares , Células-Tronco Mesenquimais , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Cisplatino/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismoRESUMO
A set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes' shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.
RESUMO
Current in vitro models have significant limitations for new respiratory disease research and rapid drug repurposing. Lung on a chip (LOAC) technology offers a potential solution to these problems. However, these devices typically are fabricated from polydimethylsiloxane (PDMS), which has small hydrophobic molecule absorption, which hinders the application of this technology in drug repurposing for respiratory diseases. Off-stoichiometry thiol-ene (OSTE) is a promising alternative material class to PDMS. Therefore, this study aimed to test OSTE as an alternative material for LOAC prototype development and compare it to PDMS. We tested OSTE material for light transmission, small molecule absorption, inhibition of enzymatic reactions, membrane particle, and fluorescent dye absorption. Next, we microfabricated LOAC devices from PDMS and OSTE, functionalized with human umbilical vein endothelial cell (HUVEC) and A549 cell lines, and analyzed them with immunofluorescence. We demonstrated that compared to PDMS, OSTE has similar absorption of membrane particles and effect on enzymatic reactions, significantly lower small molecule absorption, and lower light transmission. Consequently, the immunofluorescence of OSTE LOAC was significantly impaired by OSTE optical properties. In conclusion, OSTE is a promising material for LOAC, but optical issues should be addressed in future LOAC prototypes to benefit from the material properties.