Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(D1): D252-D259, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140464

RESUMO

We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences.


Assuntos
Bases de Dados Genéticas , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Humanos , Camundongos , Modelos Genéticos , Motivos de Nucleotídeos , Análise de Sequência de DNA
2.
BMC Plant Biol ; 16: 107, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27137920

RESUMO

BACKGROUND: Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. RESULTS: Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. CONCLUSIONS: For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3(+) ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antígenos de Plantas/genética , Antígenos de Plantas/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Clonagem Molecular , Ciclopentanos/metabolismo , DNA Complementar/genética , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipídeos/química , Espectroscopia de Ressonância Magnética , Oxilipinas/metabolismo , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA