Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Planta ; 249(5): 1565-1581, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30737556

RESUMO

MAIN CONCLUSION: Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism.


Assuntos
Gossypium/metabolismo , Polissacarídeos/metabolismo , Fibra de Algodão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Xilanos/metabolismo
2.
BMC Plant Biol ; 17(1): 69, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359260

RESUMO

BACKGROUND: Cotton fibre quality traits such as fibre length, strength, and degree of maturation are determined by genotype and environment during the sequential phases of cotton fibre development (cell elongation, transition to secondary cell wall construction and cellulose deposition). The cotton fibre middle lamella (CFML) is crucial for both cell adhesion and detachment processes occurring during fibre development. To explore the relationship between fibre quality and the pace at which cotton fibres develop, a structural and compositional analysis of the CFML was carried out in several cultivars with different fibre properties belonging to four commercial species: Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum. RESULTS: Cotton fibre cell adhesion, through the cotton fibre middle lamella (CFML), is a developmentally regulated process determined by genotype. The CFML is composed of de-esterified homogalacturonan, xyloglucan and arabinan in all four fibre-producing cotton species: G. hirsutum, G. barbadense, G. herbaceum and G. arboreum. Conspicuous paired cell wall bulges are a feature of the CFML of two G. hirsutum cultivars from the onset of fibre cell wall detachment to the start of secondary cell wall deposition. Xyloglucan is abundant in the cell wall bulges and in later stages pectic arabinan is absent from these regions. CONCLUSIONS: The CFML of cotton fibres is re-structured during the transition phase. Paired cell wall bulges, rich in xyloglucan, are significantly more evident in the G. hirsutum cultivars than in other cotton species.


Assuntos
Fibra de Algodão , Gossypium/citologia , Adesão Celular , Parede Celular/química , Genótipo , Glucanos/metabolismo , Gossypium/genética , Gossypium/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo
3.
Plant Cell Physiol ; 56(9): 1786-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26187898

RESUMO

The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing.


Assuntos
Parede Celular/metabolismo , Fibra de Algodão , Epitopos/metabolismo , Mananas/metabolismo , Xilanos/metabolismo , Fenômenos Biomecânicos , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise em Microsséries , Monossacarídeos/análise , Especificidade da Espécie
4.
Plant Cell ; 24(7): 3119-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22805434

RESUMO

The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Frutas/enzimologia , Lipídeos de Membrana/metabolismo , Solanum lycopersicum/enzimologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Regulação para Baixo/genética , Frutas/química , Frutas/genética , Frutas/ultraestrutura , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Lipídeos de Membrana/química , Microscopia de Força Atômica , Epiderme Vegetal/química , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteômica , Interferência de RNA , Ceras/química , Ceras/metabolismo
5.
PLoS One ; 9(11): e112168, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383868

RESUMO

A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.


Assuntos
Parede Celular/metabolismo , Fibra de Algodão , Gossypium/citologia , Polissacarídeos/metabolismo , Gossypium/metabolismo , Análise dos Mínimos Quadrados , Modelos Lineares , Análise em Microsséries , Análise Multivariada , Fenótipo
6.
PLoS One ; 9(12): e115150, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517975

RESUMO

Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.


Assuntos
Fibra de Algodão/métodos , Gossypium/química , Polímeros/química , Polissacarídeos/metabolismo , Têxteis , Arabinose/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Glucanos/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Microscopia de Fluorescência , Pectinas/metabolismo , Xilanos/metabolismo
7.
J Agric Food Chem ; 59(15): 8256-64, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21631113

RESUMO

One of the objectives of the malting industry is to reduce the energy cost during kilning without major effect on malt quality. In this study, the impact of a low hydration steeping process on lipid transfer protein (LTP1) modifications and ß-glucan breakdown was evaluated in low (LH) and high (HH) hydrated malts. LTP1 modifications analyzed by MS/MS revealed acylation, glycation, and disulfide bond breakage in both LH and HH malts. LTP1 free amine content measurement and fluorescence of Maillard protein adducts revealed no significant difference between LH and HH malts. Immunolabeling of LTP1 during malting highlighted the diffusion of the protein from the aleurone layer to the endosperm at the end of steeping in both LH and HH malts. By contrast, a significant higher amount of ß-glucans was measured in LH malts after five days of germination, whereas no significant difference between LH and HH malts was revealed through immunostaining of ß-glucans or evaluation of the endosperm integrity after seven days of germination. The possibility to reduce the effects of a low hydration steeping process on ß-glucan hydrolysis by increasing germination time was discussed.


Assuntos
Proteínas de Transporte/química , Manipulação de Alimentos/métodos , Hordeum/química , beta-Glucanas/química , Acilação , Proteínas de Ligação a Ácido Graxo , Germinação , Glicosilação , Hordeum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA