RESUMO
Using experiments and theory, we investigate the behavior of nonlinear acoustic modes in a physical system composed of an array of three coupled acoustic waveguides, two of which are externally driven with two different frequencies. Nonlinear modes with frequency given by linear combinations of the driving frequencies are realizations of so-called logical phi-bits. A phi-bit is a two-state degree of freedom of an acoustic wave, which can be in a coherent superposition of states with complex amplitude coefficients, i.e., a qubit analogue. We demonstrate experimentally that phi-bit modes are supported in the array of waveguides. Using perturbation theory, we show that phi-bits may result from the intrinsic nonlinearity of the material used to couple the waveguides. We have also isolated possible effects on phi-bit states associated with the systems' electronics, transducers and ultrasonic coupling agents used to probe the array and that may introduce extrinsic nonlinearities. These extrinsic effects are shown to be easily separable from the intrinsic behavior. The intrinsic behavior includes sharp jumps in phi-bit phases occurring over very narrow ranges of driving frequency. These jumps may also exhibit hysteretic behavior dependent on the direction of driving frequency tuning. The intrinsic states of phi-bits and multiple nonlinearly correlated phi-bits may serve as foundation for robust and practical quantum-analogue information technologies.
RESUMO
A phononic crystal (PC) consisting of a square array of cylindrical polyvinylchloride inclusions in air is used to construct a variety of acoustic logic gates. In a certain range of operating frequencies, the PC band structure shows square-like equi-frequency contours centered off the gamma point. This attribute allows for the realization of non-collinear wave and group velocity vectors in the PC wave vector space. This feature can be utilized to control with great precision, the relative phase between propagating acoustic waves in the PC. By altering the incidence angle of the impinging acoustic beams or varying the PC thickness, interferences occur between acoustic wave pairs. It is recognized that information can be encoded with this mechanism (e.g., wave amplitudes/interference patterns) and accordingly to construct a series of logic gates emulating Boolean functions. The NAND, XOR, and NOT gates are demonstrated with finite-difference time-domain simulations of acoustic waves impinging upon the PC.
Assuntos
Acústica/instrumentação , Modelos Teóricos , Cloreto de Polivinila/química , Processamento de Sinais Assistido por Computador , Som , Simulação por Computador , Cristalização , Movimento (Física) , Análise Numérica Assistida por Computador , Fatores de TempoRESUMO
A strategy to gain insight into early changes that may predispose people to Alzheimer's disease (AD) is to study the brains of younger cognitively healthy people that are at increased genetic risk of AD. The Apolipoprotein (APOE) E4 allele is the strongest genetic risk factor for AD, and several neuroimaging studies comparing APOE E4 carriers with non-carriers at age â¼20-30 years have detected hyperactivity (or reduced deactivation) in posteromedial cortex (PMC), a key hub of the default network (DN), which has a high susceptibility to early amyloid deposition in AD. Transgenic mouse models suggest such early network activity alterations may result from altered excitatory/inhibitory (E/I) balance, but this is yet to be examined in humans. Here we test the hypothesis that PMC fMRI hyperactivity could be underpinned by altered levels of excitatory (glutamate) and/or inhibitory (GABA) neurotransmitters in this brain region. Forty-seven participants (20 APOE E4 carriers and 27 non-carriers) aged 18-25 years underwent resting-state proton magnetic resonance spectroscopy (1H-MRS), a non-invasive neuroimaging technique to measure glutamate and GABA in vivo. Metabolites were measured in a PMC voxel of interest and in a comparison voxel in the occipital cortex (OCC). There was no difference in either glutamate or GABA between the E4 carriers and non-carriers in either MRS voxel, or in the ratio of glutamate to GABA, a measure of E/I balance. Default Bayesian t-tests revealed evidence in support of this null finding. Our findings suggest that PMC hyperactivity in APOE E4 carriers is unlikely to be associated with, or possibly may precede, alterations in local resting-state PMC neurotransmitters, thus informing our understanding of the spatio-temporal sequence of early network alterations underlying APOE E4 related AD risk.
RESUMO
Hidden order may arise in strongly correlated systems even if there is an apparent lack of long-range order as measured by local order parameters. This phenomenon has been essentially associated with topological order in quantum systems. Here, we demonstrate the emergence of hidden order in a 1D non-linear classical mechanical system that supports rotational degrees of freedom. The potential energy of the model system creates a bistable system for which hidden order emerges with the introduction of a biquadratic term. To our surprise, we discover that varying the strength of the biquadratic term leads to four distinct phases quantified by the behaviors of the Néel and string order parameters. Three of these phases are locally disordered. Hidden order is identified by a string order parameter that shows correlations with significantly longer range than the Néel order parameter. The hidden order correlation length diverges as the kinetic energy of the system is lowered with a critical exponent ~0.5. The observation of hidden order in a mechanical system reveals that instability and non-linearity may play critical roles in the generation of nonlocal long-range correlations in apparently locally disordered systems.
RESUMO
We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert space with exponential complexity. The amplitudes appearing in the nonseparable superposition of elastic states are complex quantities dependent on the frequency of the external driver. By tuning these complex amplitudes, we can navigate the state's Hilbert space. This nonlinear elastic system is analogous to a two-partite two-level quantum system.
RESUMO
In the yeast Saccharomyces cerevisiae, one determinant of aging or life span is the accumulation of extrachromosomal copies of rDNA circles in old mother cells [1]. The production of rDNA circles depends upon intrachromosomal recombination within the rDNA tandem array, a process regulated by the protein Sir2 (Sir2p). Together with Sir1p, Sir3p, Sir4p and Orc1p, Sir2p is also involved in transcriptional silencing of genes at the silent mating-type cassettes, in the rDNA array, and at telomeres. Using a 'triple silencer' strain that can monitor an increase or decrease in gene expression at these three loci, we found that deletion of the ZDS1 gene caused an increase in silencing in the rDNA and at a silent mating-type cassette at the expense of telomere silencing. The zds1 deletion also resulted in an increase in life span and a decrease in Sir3p phosphorylation. In contrast, deletion of its paralog ZDS2 caused a decrease in rDNA silencing, a decrease in life span and an increase in Sir3p phosphorylation. As Zds2p, but not Zds1p, had strong two-hybrid interactions with Orc1p and the four Sir proteins, Zds1p might indirectly control Sir3p through a Sir3p kinase.
Assuntos
Inativação Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , DNA Ribossômico/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosforilação , Recombinação Genética , Saccharomyces cerevisiae/genética , Transativadores/metabolismoRESUMO
Current models of telomere formation and replication involve either telomerase, a novel ribonucleoprotein, or recombination between the ends of DNA molecules. However, present models will have to be modified to explain recent data on telomere formation in yeast. An understanding of the mechanisms of telomere maintenance in yeast may reveal how other organisms with heterogeneous telomeric repeats replicate their chromosomal termini.
Assuntos
Cromossomos Fúngicos , Cromossomos , Saccharomyces/genética , Tetrahymena/genética , Animais , Sequência de Bases , DNA Nucleotidiltransferases/genética , Replicação do DNA , Dados de Sequência MolecularRESUMO
The telomeres of most organisms consist of short repeated sequences that can be elongated by telomerase, a reverse transcriptase complex that contains its own RNA template for the synthesis of telomere repeats. In Saccharomyces cerevisiae, the RAP1 gene encodes the major telomere binding protein Rap1p. Here we use a quantitative telomere formation assay to demonstrate that Rap1p C termini can enhance telomere formation more than 30-fold when they are located at internal sites. This stimulation is distinct from protection from degradation. Enhancement of formation required the gene for telomerase RNA but not Sir1p, Sir2p, Sir3p, Sir4p, Tel1p, or the Rif1p binding site in the Raplp C terminus. Our data suggest that Rap1p C termini enhance telomere formation by attracting or increasing the activity of telomerase near telomeres. Earlier work suggests that Rap1p molecules at the chromosome terminus inhibit the elongation of long telomeres by blocking the access of telomerase. Our results suggest a model where a balance between internal Rap1p increasing telomerase activity and Rap1p at the termini of long telomeres controlling telomerase access maintains telomeres at a constant length.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Telômero/fisiologia , Fatores de Transcrição , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Repetições de Dinucleotídeos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Sirtuína 2 , Sirtuínas , Telomerase/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
The termini of Saccharomyces cerevisiae chromosomes consist of tracts of C1-3A (one to three cytosine and one adenine residue) sequences of approximately 450 base pairs in length. To gain insights into trans-acting factors at telomeres, high-copy-number linear and circular plasmids containing tracts of C1-3A sequences were introduced into S. cerevisiae. We devised a novel system to distinguish by color colonies that maintained the vector at 1 to 5, 20 to 50, and 100 to 400 copies per cell and used it to change the amount of telomeric DNA sequences per cell. An increase in the number of C1-3A sequences caused an increase in the length of telomeric C1-3A repeats that was proportional to plasmid copy number. Our data suggest that telomere growth is inhibited by a limiting factor(s) that specifically recognizes C1-3A sequences and that this factor can be effectively competed for by long tracts of C1-3A sequences at telomeres or on circular plasmids. Telomeres without this factor are exposed to processes that serve to lengthen chromosome ends.
Assuntos
Cromossomos/ultraestrutura , DNA Fúngico/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Amplificação de Genes , Vetores Genéticos , Plasmídeos , Saccharomyces cerevisiae/ultraestruturaRESUMO
The DNA-protein complexes at the ends of linear eukaryotic chromosomes are called the telomeres. In Saccharomyces cerevisiae, telomeric DNA consists of a variable length of the short repeated sequence C1-3A. The length of yeast telomeres can be altered by mutation, by changing the levels of telomere binding proteins, or by increasing the amount of C1-3A DNA sequences. Cells bearing the tel1-1 or tel2-1 mutations, known previously to have short telomeres, did not respond to perturbations that caused telomere lengthening in wild-type cells. The transcription of genes placed near yeast telomeres is reversibly repressed, a phenomenon called the telomere position effect. The tel2-1 mutation reduced the position effect but did not affect transcriptional repression at the silent mating type cassettes, HMRa and HML alpha. The TEL2 gene was cloned, sequenced, and disrupted. Cells lacking TEL2 function died, with some cells arresting as large cells with three or four small protrusions or "blebs."
Assuntos
Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/genética , Telômero/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Fúngico/genética , Repetições de Microssatélites , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/ultraestrutura , Telômero/ultraestruturaRESUMO
Saccharomyces cerevisiae telomeres consist of a continuous 325 +/- 75-bp tract of the heterogeneous repeat TG1-3 which contains irregularly spaced, high-affinity sites for the protein Rap1p. Yeast cells monitor or count the number of telomeric Rap1p molecules in a negative feedback mechanism which modulates telomere length. To investigate the mechanism by which Rap1p molecules are counted, the continuous telomeric TG1-3 sequences were divided into internal TG1-3 sequences and a terminal tract separated by nontelomeric spacers of different lengths. While all of the internal sequences were counted as part of the terminal tract across a 38-bp spacer, a 138-bp disruption completely prevented the internal TG1-3 sequences from being considered part of the telomere and defined the terminal tract as a discrete entity separate from the subtelomeric sequences. We also used regularly spaced arrays of six Rap1p sites internal to the terminal TG1-3 repeats to show that each Rap1p molecule was counted as about 19 bp of TG1-3 in vivo and that cells could count Rap1p molecules with different spacings between tandem sites. As previous in vitro experiments had shown that telomeric Rap1p sites occur about once every 18 bp, all Rap1p molecules at the junction of telomeric and nontelomeric chromatin (the telomere-nontelomere junction) must participate in telomere length measurement. The conserved arrangement of these six Rap1p molecules at the telomere-nontelomere junction in independent transformants also caused the elongated TG1-3 tracts to be maintained at nearly identical lengths, showing that sequences at the telomere-nontelomere junction had an effect on length regulation. These results can be explained by a model in which telomeres beyond a threshold length form a folded structure that links the chromosome terminus to the telomere-nontelomere junction and prevents telomere elongation.
Assuntos
Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros , Telômero , Fatores de Transcrição , Sequência de Bases , Sítios de Ligação , DNA Fúngico , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Complexo ShelterinaRESUMO
The linear chromosomes of eukaryotes contain specialized structures to ensure their faithful replication and segregation to daughter cells. Two of these structures, centromeres and telomeres, are limited, respectively, to one and two copies per chromosome. It is possible that the proteins that interact with centromere and telomere DNA sequences are present in limiting amounts and could be competed away from the chromosomal copies of these elements by additional copies introduced on plasmids. We have introduced excess centromeres and telomeres into Saccharomyces cerevisiae and quantitated their effects on the rates of loss of chromosome III and chromosome VII by fluctuation analysis. We show that (i) 600 new telomeres have no effect on chromosome loss; (ii) an average of 25 extra centromere DNA sequences increase the rate of chromosome III loss from 0.4 x 10(-4) events per cell division to 1.3 x 10(-3) events per cell division; (iii) centromere DNA (CEN) sequences on circular vectors destabilize chromosomes more effectively than do CEN sequences on 15-kb linear vectors, and transcribed CEN sequences have no effect on chromosome stability. We discuss the different effects of extra centromere and telomere DNA sequences on chromosome stability in terms of how the cell recognizes these two chromosomal structures.
Assuntos
Centrômero/fisiologia , Cromossomos Fúngicos/fisiologia , Saccharomyces cerevisiae/genética , Divisão Celular , Clonagem Molecular/métodos , DNA Recombinante/metabolismo , Diploide , Escherichia coli/genética , Plasmídeos , Recombinação Genética , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Telomeres derived from the same formation event in wild type strains of Saccharomyces cerevisiae possess the same, precise TG(1-3) sequence for the most internal approximately 100 bp of the 250-350 bp TG(1-3) repeats. The conservation of this internal domain is thought to reflect the fact that telomere lengthening and shortening, and thus alteration of the precise TG(1-3) sequence, is confined to the terminal region of the telomere. The internal domains of telomeres from yku70 and tel1 mutants, whose entire telomeres are only approximately 100 bp, were examined by analyzing 5.1 kb of cloned TG(1-3) sequences from telomeres formed during transformation of wild type, yku70 and tel1 cells. The internal domains were 97-137 bp in wild type cells, 27-36 bp in yku70 cells and 7-9 bp in tel1 cells. These data suggest that the majority of the tel1 cell TG(1-3) repeats may be resynthesized during shortening and lengthening reactions while a portion of the yku70 cell telomeres are protected. TG(1-3) sequences are synthesized by telomerase repeatedly copying an internal RNA template, which introduces a sequence bias into TG(1-3) repeats. Analysis of in vivo-derived telomeres revealed that of the many possible high affinity binding sites for the telomere protein Rap1p in TG(1-3) repeats, only those consistent with telomere hybridization to the ACACAC in the 3'-region of the telomerase RNA template followed by copying of most of the template were present. Copies of the telomerase RNA template made up 40-60% of the TG(1-3) sequences from each strain and could be found in long, tandem repeats. The data suggest that in vivo yeast telomerase frequently allows telomeres to hybridize to the 3'-region of RNA template and copy most of it prior to dissociation, or that in vivo telomere processing events result in the production of TG(1-3) sequences that mimic this process.
Assuntos
DNA Fúngico/metabolismo , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Fúngico/genética , Dados de Sequência Molecular , Mutação , RNA Fúngico/genética , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Telômero/genética , Moldes GenéticosRESUMO
We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu's equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.
RESUMO
We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.
Assuntos
Acústica , Sinalização do Cálcio , Junções Comunicantes/metabolismo , Modelos Biológicos , Som , Difusão , Análise Espaço-TemporalRESUMO
Recent advances in the discovery of new functions for vitamin K-dependent (VKD) proteins and in defining vitamin K nutriture have led to a substantial revision in our understanding of vitamin K physiology. The only unequivocal function for vitamin K is as a cofactor for the carboxylation of VKD proteins which renders them active. While vitamin K was originally associated only with hepatic VKD proteins that participate in hemostasis, VKD proteins are now known to be present in virtually every tissue and to be important to bone mineralization, arterial calcification, apoptosis, phagocytosis, growth control, chemotaxis, and signal transduction. The development of improved methods for analyzing vitamin K has shed considerable insight into the relative importance of different vitamin K forms in the diet and their contribution to hepatic vs. non-hepatic tissue. New assays that measure the extent of carboxylation in VKD proteins have revealed that while the current recommended daily allowance for vitamin K is sufficient for maintaining functional hemostasis, the undercarboxylation of at least one non-hemostatic protein is frequently observed in the general population. The advances in defining VKD protein function and vitamin K nutriture are described, as is the potential impact of VKD proteins on atherosclerosis. Many of the VKD proteins contribute to atherogenesis. Recent studies suggest involvement in arterial calcification, which may be influenced by dietary levels of vitamin K and by anticoagulant drugs such as warfarin that antagonize vitamin K action.
Assuntos
Anticoagulantes/farmacologia , Arteriosclerose/tratamento farmacológico , Arteriosclerose/patologia , Vitamina K/farmacologia , Vitamina K/fisiologia , Animais , Quimiotaxia , Hemostasia , Humanos , Fígado/metabolismo , Modelos Biológicos , Modelos Químicos , Fenômenos Fisiológicos da Nutrição , Estrutura Terciária de Proteína , Fatores de Risco , Transdução de Sinais , Vitamina K/metabolismoRESUMO
The effect of long-term heavy alcohol consumption on brain functions is still under debate. The authors investigated a sample of 17 Korsakoff amnesics, 23 alcoholics without Korsakoff's syndrome, and 21 controls with peripheral nerve diseases, matched for intelligence and education. Executive functions were examined for word fluency, the modified Wisconsin Card Sorting Test, an alternate response task, and an "n-back" working memory task. Korsakoff amnesics, but not alcoholics, showed a marked memory impairment. They also scored lower in each of the executive tasks-the alcoholics only in the alternate response task. This task also correlated with the years of the alcohol dependency. First, the authors conclude that Korsakoff's syndrome is associated not only with a memory impairment but also with a global executive deficit. Second, the decline in the ability to alternate between different responses argues for a restricted neurotoxic effect of alcohol on some frontal lobe areas.
Assuntos
Alcoolismo/psicologia , Lobo Frontal/fisiopatologia , Síndrome de Korsakoff/psicologia , Desempenho Psicomotor , Adulto , Idoso , Alcoolismo/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Síndrome de Korsakoff/fisiopatologia , Masculino , Transtornos da Memória/psicologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Aprendizagem VerbalRESUMO
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.