Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834510

RESUMO

Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.


Assuntos
Receptores sigma , Esfingosina , Animais , Esfingolipídeos , Ceramidas , Mamíferos/metabolismo , Receptor Sigma-1
2.
Adv Exp Med Biol ; 964: 255-265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28315276

RESUMO

The membrane bound 223 amino acid Sigma-1 Receptor (S1R) serves as a molecular chaperone and functional regulator of many signaling proteins. Spinal cord motor neuron activation occurs, in part, via large ventral horn cholinergic synapses called C-boutons/C-terminals. Chronic excitation of motor neurons and alterations in C-terminals has been associated with Amyotrophic Lateral Sclerosis (ALS ). The S1R has an important role in regulating motor neuron function. High levels of the S1R are localized in postsynaptic endoplasmic reticulum (ER) subsurface cisternae within 10-20 nm of the plasma membrane that contain muscarinic type 2 acetylcholine receptors (M2AChR), calcium activated potassium channels (Kv2.1) and slow potassium (SK) channels. An increase in action potentials in the S1R KO mouse motor neurons indicates a critical role for the S1R as a "brake" on motor neuron function possibly via calcium dependent hyperpolarization mechanisms involving the aforementioned potassium channels. The longevity of SOD-1/S1R KO ALS mice is significantly reduced compared to SOD-1/WT ALS controls. The S1R colocalizes in C-terminals with Indole(ethyl)amine-N-methyl transferase (INMT ), the enzyme that produces the S1R agonist , N,N'- dimethyltryptamine (DMT). INMT methylation can additionally neutralize endogenous toxic sulfur and selenium derivatives thus providing functional synergism with DMT to reduce oxidative stress in motor neurons . Small molecule activation of the S1R and INMT thus provides a possible therapeutic strategy to treat ALS .


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Receptores sigma/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Receptor Sigma-1
3.
Mol Pharmacol ; 89(1): 142-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26560551

RESUMO

The sigma-1 receptor (S1R) is a 223 amino acid two transmembrane (TM) pass protein. It is a non-ATP-binding nonglycosylated ligand-regulated molecular chaperone of unknown three-dimensional structure. The S1R is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes with broad functions that regulate cellular calcium homeostasis and reduce oxidative stress. Several multitasking functions of the S1R are underwritten by chaperone-mediated direct (and indirect) interactions with ion channels, G-protein coupled receptors and cell-signaling molecules involved in the regulation of cell growth. The S1R is a promising drug target for the treatment of several neurodegenerative diseases related to cellular stress. In vitro and in vivo functional and molecular characteristics of the S1R and its interactions with endogenous and synthetic small molecules have been discovered by the use of pharmacologic, biochemical, biophysical, and molecular biology approaches. The S1R exists in monomer, dimer, tetramer, hexamer/octamer, and higher oligomeric forms that may be important determinants in defining the pharmacology and mechanism(s) of action of the S1R. A canonical GXXXG in putative TM2 is important for S1R oligomerization. The ligand-binding regions of S1R have been identified and include portions of TM2 and the TM proximal regions of the C terminus. Some client protein chaperone functions and interactions with the cochaperone 78-kDa glucose-regulated protein (binding immunoglobulin protein) involve the C terminus. Based on its biochemical features and mechanisms of chaperone action the possibility that the S1R is a member of the small heat shock protein family is discussed.


Assuntos
Receptores sigma/agonistas , Receptores sigma/metabolismo , Sequência de Aminoácidos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Receptores sigma/genética , Receptor Sigma-1
4.
J Biol Chem ; 289(29): 20333-44, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24847081

RESUMO

Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[(3)H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed.


Assuntos
Receptores sigma/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Reagentes de Ligações Cruzadas , Cobaias , Haloperidol/metabolismo , Humanos , Ligantes , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pentazocina/metabolismo , Multimerização Proteica , Estabilidade Proteica , Receptores sigma/genética , Receptores sigma/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor Sigma-1
5.
J Pharmacol Sci ; 127(1): 10-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704013

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease affecting spinal cord motoneurons (MN) with an associative connection to Frontotemporal Lobar Dementia (FTLD). The endoplasmic reticulum (ER) bound Sigma-1 Receptor (S1R) chaperone protein localizes to specialized ER cisternae within 10 nm of the plasma membrane in spinal cord ventral horn cholinergic post synaptic C-terminals. Removal of the S1R gene in the Superoxide Dismutase-1 (SOD-1) mouse model of ALS exacerbated the neurodegenerative condition and resulted in a significantly reduced longevity when compared to the SOD-1/S1R wild type (WT) mouse. The proposed amelioration of the ALS phenotype by the S1R is likely due to a "brake" on excitation of the MN as evidenced by a reduction in action potential generation in the MN of the WT when compared to the S1R KO mouse MN. Although the precise signal transduction pathway(s) regulated by the S1R in the MN has/have not been elucidated at present, it is likely that direct or indirect functional interactions occur between the S1R in the ER cisternae with voltage gated potassium channels and/or with muscarinic M2 receptor signaling in the post synaptic plasma membrane. Possible mechanisms for regulation of MN excitability by S1R are discussed.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Receptores sigma/fisiologia , Potenciais de Ação/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Camundongos Knockout , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Receptores sigma/genética , Receptor Sigma-1
6.
Biochemistry ; 53(18): 2956-65, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24730580

RESUMO

Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 µM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.


Assuntos
Metiltransferases/antagonistas & inibidores , N,N-Dimetiltriptamina/farmacologia , Triptaminas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Cinética , Pulmão/enzimologia , Metiltransferases/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Coelhos
7.
Biochemistry ; 52(5): 859-68, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23324054

RESUMO

The sigma-1 receptor is a ligand-regulated endoplasmic reticulum (ER) resident chaperone involved in the maintenance of cellular homeostasis. Coupling of the sigma-1 receptor with various ER and/or plasma membrane ion channels is associated with its ability to regulate the locomotor activity and cellular proliferation produced in response to sigma-1 receptor ligands. A number of endogenous small molecules bind to the sigma-1 receptor and have been shown to regulate its activity; these include progesterone, N,N-dimethyltryptamine, d-erythro-sphingosine, and/or other endogenous lipids. We previously reported the synthesis of long chain N-alkylamine derivatives and the characterization of the structure-activity relationship between the chain length of N-alkylamine and affinities at the sigma-1 receptor. Here, we present data demonstrating the photoincorporation of one of these N-alkylamine derivatives, N-[3-(4-nitrophenyl)propyl]-N-dodecylamine (4-NPPC12), to the sigma-1 receptor. Matrix-assisted laser desorption ionization time-of-flight and tandem mass spectrometry showed that 4-NPPC12 photoinserted at histidine 154 of the derivatized population of the sigma-1 receptor. Interestingly, light-dependent photoinsertion of 4-NPPC12 resulted in an enhanced electrophoretic mobility of only 50% of the derivatized receptor molecules as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proposed binding and reactivity of 4-NPPC12 evoke a ligand binding model for the sigma-1 receptor that likely involves a receptor dimer and/or oligomer.


Assuntos
Marcadores de Afinidade/química , Aminas/química , Receptores sigma/análise , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Expressão Gênica , Cobaias , Luz , Processos Fotoquímicos , Multimerização Proteica , Ratos , Receptores sigma/genética , Receptor Sigma-1
8.
J Biol Chem ; 286(17): 15260-7, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21393250

RESUMO

In the visual signal terminating transition state, the cyclic GMP phosphodiesterase (PDE6) inhibitory γ-subunit (PDEγ) stimulates GTPase activity of the α-subunit of transducin (αt) by enhancing the interaction between αt and its regulator of G protein signaling (RGS9), which is constitutively bound to the type 5 G protein ß-subunit (ß5). Although it is known from a crystal structure of partial molecules that the PDEγ C terminus contacts with both αt and RGS9, contributions from the intrinsically disordered PDEγ N-terminal half remain unclear. In this study, we were able to investigate this issue using a photolabel transfer strategy that allows for mapping the interface of full-length proteins. We observed label transfer from PDEγ N-terminal positions 50, 30, and 16 to RGS9·ß5 in the GTPase-accelerating protein (GAP) complex composed of PDEγ·αt·RGS9·ß5. In support of a direct PDEγ N-terminal interaction with RGS9·ß5, the PDEγ N-terminal peptide PDEγ(1-61) abolished label transfer to RGS9·ß5, and another N-terminal peptide, PDEγ(10-30), disassembled the GAP complex in label transfer and pulldown experiments. Furthermore, we determined that the PDEγ C-terminal interaction with αt was enhanced whereas the N-terminal interaction was weakened upon changing the αt conformation from the signaling state to the transition state. This "rearrangement" of PDEγ domain interactions with αt appears to facilitate the interaction of the PDEγ N-terminal half with RGS9·ß5 and hence its contribution to optimal stabilization of the GAP complex.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Proteínas RGS/química , Animais , Bovinos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Estabilidade Proteica
9.
Chembiochem ; 13(15): 2277-89, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23001760

RESUMO

Sigma (σ) receptors are unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been shown to have σ2 receptor-like binding properties, thus highlighting the need to understand the biological function of an 18 kDa protein that exhibits σ2-like photoaffinity labeling (denoted here as σ2-18k) but the amino acid sequence of which is not known. In order to provide new tools for the study of the σ2-18k protein, we have developed bifunctional σ receptor ligands each bearing a benzophenone photo-crosslinking moiety and an alkyne group to which an azide-containing biotin affinity tag can be covalently attached through click chemistry after photo-crosslinking. Although several compounds showed favorable σ2 binding properties, the highest affinity (2 nM) and the greatest potency in blocking photolabeling of σ2-18k by a radioactive photoaffinity ligand was shown by compound 22. These benzophenone-alkyne σ receptor ligands might therefore be amenable for studying the σ2-18k protein through chemical biology approaches. To the best of our knowledge, these compounds represent the first reported benzophenone-containing clickable σ receptor ligands, which might potentially have broad applications based on the "plugging in" of various tags.


Assuntos
Alcinos/química , Alcinos/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Receptores sigma/metabolismo , Linhagem Celular , Química Click , Reagentes de Ligações Cruzadas/química , Humanos , Ligantes , Processos Fotoquímicos
10.
Am J Physiol Cell Physiol ; 300(2): C328-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084640

RESUMO

σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.


Assuntos
Progesterona/metabolismo , Receptores sigma/antagonistas & inibidores , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Guanidinas/farmacologia , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , N,N-Dimetiltriptamina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Fenazocina/análogos & derivados , Fenazocina/farmacologia , Piperazinas/farmacologia , Progesterona/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
11.
Biochemistry ; 50(35): 7568-78, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21790129

RESUMO

Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions, including drug addiction, psychosis, and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids, including d-erythro-sphingosine, sphinganine, and N,N-dimethylsphingosine, bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran, S., et al. (2009) Eur. J. Pharmacol. 609, 19-26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the K(I) values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butylamine (1a and 1b, respectively), heptylamine (2a and 2b, respectively), dodecylamine (3a and 3b, respectively), and octadecylamine (4a and 4b, respectively) were evaluated as sigma receptor ligands, we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of high-affinity ligands 2a, 2b, 3a, and 3b against a variety of other receptors and/or transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK-293 cells reconstituted with K(v)1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel, consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a, and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anticancer agents.


Assuntos
Aminas/química , Nitrofenóis/química , Receptores sigma/química , Aminas/metabolismo , Animais , Linhagem Celular Tumoral , Cobaias , Células HEK293 , Humanos , Ligantes , Fígado/química , Fígado/metabolismo , Nitrofenóis/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
12.
J Biol Chem ; 285(20): 15209-15219, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20231289

RESUMO

Activation of the cyclic GMP phosphodiesterase (PDE6) by transducin is the central event of visual signal transduction. How the PDE6 inhibitory gamma-subunit (Pgamma) interacts with the catalytic subunits (Palphabeta) and the transducin alpha-subunit (alpha(t)) in this process is not entirely clear. Here we have investigated this issue, taking advantage of site-specific label transfer from throughout the full-length Pgamma molecule to both alpha(t) and Palphabeta. The interaction profiling and pull-down experiments revealed that the Pgamma C- terminal domain accounted for the major interaction with alpha(t) bound with guanosine 5'-3-O-(thio)triphosphate (alpha(t)GTPgammaS) in comparison with the central region, whereas an opposite pattern was observed for the Pgamma-Palphabeta interaction. This complementary feature was further exhibited when both alpha(t)GTPgammaS and Palphabeta were present and competing for Pgamma interaction, with the Pgamma C-terminal domain favoring alpha(t), whereas the central region demonstrated a preference for Palphabeta. Furthermore, alpha(t)GTPgammaS co-immunoprecipitated with PDE6 and vice versa in a Pgamma-dependent manner. Either Palphabeta or alpha(t)GTPgammaS could be pulled down by the Btn-Pgamma molecules on streptavidin beads that were saturated by the other partner, indicating simultaneous binding of these two partners to Pgamma. These data together indicate that complementary Pgamma interactions with its two targets facilitate the alpha(t).PDE6 "transducisome" formation. Thus, our study provides new insights into the molecular mechanisms of PDE6 activation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Transducina/metabolismo , Animais , Domínio Catalítico , Bovinos , Cromatografia Líquida de Alta Pressão , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Imunoprecipitação , Transducina/química
13.
Bioorg Med Chem ; 19(24): 7435-40, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22055714

RESUMO

The sigma-2 (σ2) receptor has been suggested to be a promising target for pharmacological interventions to curb tumor progression. Development of σ2-specific ligands, however, has been hindered by lack of understanding of molecular determinants that underlie selective ligand-σ2 interactions. Here we have explored effects of electron donating and withdrawing groups on ligand selectivity for the σ2 versus σ1 receptor using new benzamide-isoquinoline derivatives. The electron-donating methoxy group increased but the electron-withdrawing nitro group decreased σ2 affinity. In particular, an extra methoxy added to the para-position (5e) of the benzamide phenyl ring of 5f dramatically improved (631 fold) the σ2 selectivity relative to the σ1 receptor. This para-position provided a sensitive site for effective manipulation of the sigma receptor subtype selectivity using either the methoxy or nitro substituent. Our study provides a useful guide for further improving the σ2-over-σ1 selectivity of new ligands.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacologia , Receptores sigma/metabolismo , Animais , Elétrons , Ligantes , Ensaio Radioligante , Ratos
14.
Proc Natl Acad Sci U S A ; 105(5): 1505-10, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18230733

RESUMO

The retinal phosphodiesterase (PDE6) inhibitory gamma-subunit (PDEgamma) plays a central role in vertebrate phototransduction through alternate interactions with the catalytic alphabeta-subunits of PDE6 and the alpha-subunit of transducin (alpha(t)). Detailed structural analysis of PDEgamma has been hampered by its intrinsic disorder. We present here the NMR solution structure of PDEgamma, which reveals a loose fold with transient structural features resembling those seen previously in the x-ray structure of PDEgamma(46-87) when bound to alpha(t) in the transition-state complex. NMR mapping of the interaction between PDEgamma(46-87) and the chimeric PDE5/6 catalytic domain confirmed that C-terminal residues 74-87 of PDEgamma are involved in the association and demonstrated that its W70 indole group, which is critical for subsequent binding to alpha(t), is left free at this stage. These results indicate that the interaction between PDEgamma and alpha(t) during the phototransduction cascade involves the selection of preconfigured transient conformations.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Animais , Domínio Catalítico , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas
15.
Bioorg Med Chem ; 18(12): 4397-404, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20493718

RESUMO

The sigma-1 receptor is a unique non-opioid, non-PCP binding site that has been implicated in many different pathophysiological conditions including psychosis, drug addiction, retinal degeneration and cancer. Based on the structure of fenpropimorph, a high affinity (K(i)=0.005 nM)(1) sigma-1 receptor ligand and strong inhibitor of the yeast sterol isomerase (ERG2), we previously deduced a basic sigma-1 receptor pharmacophore or chemical backbone composed of a phenyl ring attached to a di-substituted nitrogen atom via an alkyl chain.(2) Here, we report the design and synthesis of various N,N-dialkyl or N-alkyl-N-aralkyl derivatives based on this pharmacophore as well as their binding affinities to the sigma-1 receptor. We introduce three high affinity sigma-1 receptor compounds, N,N-dibutyl-3-(4-fluorophenyl)propylamine (9), N,N-dibutyl-3-(4-nitrophenyl)propylamine (3), and N-propyl-N'-4-aminophenylethyl-3-(4-nitrophenyl)propylamine (20) with K(i) values of 17.7 nM, 0.36 nM, and 6 nM, respectively. In addition to sigma receptor affinity, we show through cytotoxicity assays that growth inhibition of various tumor cell lines occurs with our high affinity N,N-dialkyl or N-alkyl-N-aralkyl derivatives.


Assuntos
Compostos de Anilina/química , Antineoplásicos/síntese química , Ligantes , Morfolinas/química , Propilaminas/química , Propilaminas/síntese química , Receptores sigma/antagonistas & inibidores , Compostos de Anilina/síntese química , Compostos de Anilina/toxicidade , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Morfolinas/síntese química , Morfolinas/toxicidade , Propilaminas/toxicidade , Ligação Proteica , Receptores sigma/metabolismo , Receptor Sigma-1
16.
Amino Acids ; 36(3): 511-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18563518

RESUMO

N,N'-Pyromelliticdiimido-di-L-amino acids (1a-1d) were prepared from the reaction of pyromellitic dianhydride with the corresponding L-amino acids in a solution of glacial acetic acid/pyridine (3:2) at refluxing temperature. 4,4'-sulfonyl bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, 4,4'-oxy bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol and 4,4'-methylene bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, were prepared from 4,4'-diamino diphenyl sulfone, 4,4'-diamino diphenyl ether, 4,4'-diamino diphenyl methane, sodium nitrite and phenol following the general procedure of diazo coupling. Interfacial polycondensation method was used to prepare the corresponding poly(azo-ester-imid)s (PAEI(1-12)) in biphasic solution of water/dichloromethane. The resulting polymers (PAEIs) have been obtained in high yields having good inherent viscosities (0.32-0.57 dl g(-1)), optical activities and thermal stabilities.


Assuntos
Aminoácidos/química , Compostos Azo/química , Imidas/química , Polímeros/química , Aminoácidos/síntese química , Compostos Azo/síntese química , Imidas/síntese química , Polímeros/síntese química
17.
Amino Acids ; 37(3): 537-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19234747

RESUMO

Complex (S,S)-[Pd{C(6)H(4)(CH(2)CHNH(2)CO(2)CH(2)CH(3))}(mu-Br)](2) (3) was prepared following the method by Vicente and Saura-Llamas (Organometallics 26:2768-2776, 2007), by the reaction of L: -ethylphenylalanate and Pd(OAc)(2) in 1:1 molar ratio under acetonitrile heating conditions and subsequently treating with NaBr. In addition, the cleavage of halogeno-bridge of the complex 3 via nucleophilic attack of some neutral ligands such as triphenylphosphine, pyridine, 2,4,6-trimethylpyridine and piperidine were investigated and the corresponding complexes (S)-[Pd{C(6)H(4)(CH(2)CHNH(2)CO(2)CH(2)CH(3))(Y)(Br)}] (4a-f) were obtained in moderate yields. The six-member orthopalladated complexes were characterized by (1)H-NMR, (31)P-NMR, FT-IR and elemental analysis techniques.


Assuntos
Quelantes/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Paládio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição
18.
J Neural Transm (Vienna) ; 116(12): 1591-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19756361

RESUMO

N,N-dimethyltryptamine (DMT) is a potent plant hallucinogen that has also been found in human tissues. When ingested, DMT and related N,N-dialkyltryptamines produce an intense hallucinogenic state. Behavioral effects are mediated through various neurochemical mechanisms including activity at sigma-1 and serotonin receptors, modification of monoamine uptake and release, and competition for metabolic enzymes. To further clarify the pharmacology of hallucinogenic tryptamines, we synthesized DMT, N-methyl-N-isopropyltryptamine (MIPT), N,N-dipropyltryptamine (DPT), and N,N-diisopropyltryptamine. We then tested the abilities of these N,N-dialkyltryptamines to inhibit [(3)H]5-HT uptake via the plasma membrane serotonin transporter (SERT) in human platelets and via the vesicle monoamine transporter (VMAT2) in Sf9 cells expressing the rat VMAT2. The tryptamines were also tested as inhibitors of [(3)H]paroxetine binding to the SERT and [(3)H]dihydrotetrabenazine binding to VMAT2. Our results show that DMT, MIPT, DPT, and DIPT inhibit [(3)H]5-HT transport at the SERT with K ( I ) values of 4.00 +/- 0.70, 8.88 +/- 4.7, 0.594 +/- 0.12, and 2.32 +/- 0.46 microM, respectively. At VMAT2, the tryptamines inhibited [(3)H]5-HT transport with K ( I ) values of 93 +/- 6.8, 20 +/- 4.3, 19 +/- 2.3, and 19 +/- 3.1 muM, respectively. On the other hand, the tryptamines were very poor inhibitors of [(3)H]paroxetine binding to SERT and of [(3)H]dihydrotetrabenazine binding to VMAT2, resulting in high binding-to-uptake ratios. High binding-to-uptake ratios support the hypothesis that the tryptamines are transporter substrates, not uptake blockers, at both SERT and VMAT2, and also indicate that there are separate substrate and inhibitor binding sites within these transporters. The transporters may allow the accumulation of tryptamines within neurons to reach relatively high levels for sigma-1 receptor activation and to function as releasable transmitters.


Assuntos
Alucinógenos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Triptaminas/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/química , Animais , Plaquetas/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Linhagem Celular , Alucinógenos/química , Alucinógenos/metabolismo , Humanos , N,N-Dimetiltriptamina/química , N,N-Dimetiltriptamina/metabolismo , N,N-Dimetiltriptamina/farmacologia , Paroxetina/química , Paroxetina/metabolismo , Paroxetina/farmacologia , Ratos , Serotonina/química , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Spodoptera , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Trítio , Triptaminas/química , Triptaminas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
19.
PLoS One ; 14(7): e0219664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31310642

RESUMO

Phenylalanine and cysteine comprise common miss-sense variants (i.e., single nucleotide polymorphisms [SNPs]) at amino acid position 254 of the human indole(ethyl)amine-N-methyltransferase (hINMT). The phenylalanine variant, which occurs in linkage disequilibrium with two 3' UTR SNPs, has been reported to associate with elevated urine levels of trimethylselenonium (TMSe), the Se-methylated product of volatile dimethylselenide. hINMT allozymes expressing either cysteine (254C) or phenylalanine (254F) at position 254 were compared for enzyme activity (i.e., Km and Vmax) towards the INMT substrates tryptamine, dimethylsulfide (DMS) and dimethylselenide (DMSe) in vitro. The SNP 254C had a higher Vmax for DMS and tryptamine in the presence of reducing agent than in its absence. Conversely, Vmax for 254F was insensitive to the presence or absence of reducing agent for these substrates. SNP 254F showed a lower Km for tryptamine in the absence of reducing agent than 254C. No statistically significant difference in Vmax or Km was observed between 254C and 254F allozymes in the presence of reducing agent for DMSe, The Km values for DMSe methylation were about 10-fold (254C) or 6-fold (254F) more favorable than for tryptamine methylation with reducing agent present. These findings indicated that: 1) That phenylalanine at position 254 renders hINMT methylation of substrates DMS and tryptamine insensitive to a non reducing environment. 2) That human INMT harbors significant thioether-S-methyltransferase (TEMT) activity with a higher affinity for DMSe than tryptamine, 3) The reduction of a 44C/254C disulfide bond in hINMT that increases Vmax is proposed.


Assuntos
Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Compostos Organosselênicos/química , Sulfetos/química , Triptaminas/química , Alelos , Cristalografia por Raios X , Dissulfetos , Escherichia coli , Humanos , Isoenzimas , Cinética , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Conformação Proteica
20.
Biochemistry ; 47(27): 7205-17, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18547058

RESUMO

Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.


Assuntos
Marcadores de Fotoafinidade/metabolismo , Receptores sigma/química , Animais , Autorradiografia , Sítios de Ligação , Cocaína/análogos & derivados , Cocaína/síntese química , Cocaína/química , Brometo de Cianogênio/metabolismo , Cobaias , Metaloendopeptidases/metabolismo , Peso Molecular , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA