Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 44(10): 3359-3376, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34570292

RESUMO

Soil degradation, which is linked to poor nutrient management, remains a major constraint to sustained crop production in smallholder urban agriculture (UA) in sub-Saharan Africa (SSA). While organic nutrient resources are often used in UA to complement mineral fertilizers in soil fertility management, they are usually scarce and of poor quality to provide optimum nutrients for crop uptake. Alternative soil nutrient management options are required. This study, therefore, evaluates the short-term benefits of applying an aluminium-based water treatment residual (Al-WTR), in combination with compost and inorganic P fertilizer, on soil chemical properties, and maize (Zea mays L.) productivity and nutrient uptake. An eight-week greenhouse experiment was established with 12 treatments consisting of soil, Al-WTR and compost (with or without P fertilizer). The co-amendment (10% Al-WTR + 10% compost) produced maize shoot biomass of 3.92 ± 0.16 g at 5 weeks after emergence, significantly (p < 0.05) out-yielding the unamended control which yielded 1.33 ± 0.17 g. The addition of P fertilizer to the co-amendment further increased maize shoot yield by about twofold (7.23 ± 0.07 g). The co-amendment (10% Al-WTR + 10% C) with P increased maize uptake of zinc (Zn), copper (Cu) and manganese (Mn), compared with 10% C + P. Overall, the results demonstrate that combining Al-WTR, compost and P fertilizer increases maize productivity and micronutrient uptake in comparison with single amendments of compost and fertilizer. The enhanced micronutrient uptake can potentially improve maize grain quality, and subsequently human nutrition for the urban population of SSA, partly addressing the UN's Sustainable Development Goal number 3 of improving diets.


Assuntos
Oligoelementos , Purificação da Água , Agricultura/métodos , Alumínio , Cobre/metabolismo , Fertilizantes/análise , Humanos , Manganês , Micronutrientes , Minerais/metabolismo , Nitrogênio/análise , Solo/química , Zea mays/metabolismo , Zinco/metabolismo
2.
Environ Geochem Health ; 42(9): 3015-3033, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31902042

RESUMO

A synthesis of available agronomic datasets and peer-reviewed scientific literature was conducted to: (1) assess the status of micronutrients in sub-Saharan Africa (SSA) arable soils, (2) improve the understanding of the relations between soil quality/management and crop nutritional quality and (3) evaluate the potential profitability of application of secondary and micronutrients to key food crops in SSA, namely maize (Zea mays L.), beans (Phaseolus spp. and Vicia faba L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.). We found that there is evidence of widespread but varying micronutrient deficiencies in SSA arable soils and that simultaneous deficiencies of multiple elements (co-occurrence) are prevalent. Zinc (Zn) predominates the list of micronutrients that are deficient in SSA arable soils. Boron (B), iron (Fe), molybdenum (Mo) and copper (Cu) deficiencies are also common. Micronutrient fertilization/agronomic biofortification increases micronutrient concentrations in edible plant organs, and it was profitable to apply fertilizers containing micronutrient elements in 60-80% of the cases. However, both the plant nutritional quality and profit had large variations. Possible causes of this variation may be differences in crop species and cultivars, fertilizer type and application methods, climate and initial soil conditions, and soil chemistry effects on nutrient availability for crop uptake. Therefore, micronutrient use efficiency can be improved by adapting the rates and types of fertilizers to site-specific soil and management conditions. To make region-wide nutritional changes using agronomic biofortification, major policy interventions are needed.


Assuntos
Produtos Agrícolas/química , Fertilizantes , Micronutrientes/análise , Solo/química , África Subsaariana , Biofortificação , Humanos , Micronutrientes/deficiência , Oryza/química , Triticum/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA