Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(8): 1024-1034, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137720

RESUMO

S-methylation of drugs containing thiol-moieties often alters their activity and results in detoxification. Historically, scientists attributed methylation of exogenous aliphatic and phenolic thiols to a putative S-adenosyl-L-methionine (SAM)-dependent membrane-associated enzyme referred to as thiol methyltransferase (TMT). This putative TMT appeared to have a broad substrate specificity and methylated the thiol metabolite of spironolactone, mertansine, ziprasidone, captopril, and the active metabolites of the thienopyridine prodrugs, clopidogrel, and prasugrel. Despite TMT's role in the S-methylation of clinically relevant drugs, the enzyme(s) responsible for this activity remained unknown. We recently identified methyltransferase-like protein 7B (METTL7B) as an alkyl thiol methyltransferase. METTL7B is an endoplasmic reticulum-associated protein with similar biochemical properties and substrate specificity to the putative TMT. Yet, the historic TMT inhibitor 2,3-dichloro-α-methylbenzylamine (DCMB) did not inhibit METTL7B, indicating that multiple enzymes contribute to TMT activity. Here we report that methyltransferase-like protein 7A (METTL7A), an uncharacterized member of the METTL7 family, is also a SAM-dependent thiol methyltransferase. METTL7A exhibits similar biochemical properties to METTL7B and putative TMT, including inhibition by DCMB (IC50 = 1.17 µM). Applying quantitative proteomics to human liver microsomes and gene modulation experiments in HepG2 and HeLa cells, we determined that TMT activity correlates closely with METTL7A and METTL7B protein levels. Furthermore, purification of a novel His-GST-tagged recombinant protein and subsequent activity experiments prove that METTL7A can selectively methylate exogenous thiol-containing substrates, including 7α-thiospironolactone, dithiothreitol, 4-chlorothiophenol, and mertansine. We conclude that the METTL7 family encodes for two enzymes, METTL7A and METTL7B, which are now renamed thiol methyltransferase 1A (TMT1A) and thiol methyltransferase 1B (TMT1B), respectively, that are responsible for thiol methylation activity in human liver microsomes. SIGNIFICANCE STATEMENT: We identified methyltransferase-like protein 7A (thiol methyltransferase 1A) and methyltransferase-like protein 7B (thiol methyltransferase 1B) as the enzymes responsible for the microsomal alkyl thiol methyltransferase (TMT) activity. These are the first two enzymes directly associated with microsomal TMT activity. S-methylation of commonly prescribed thiol-containing drugs alters their pharmacological activity and/or toxicity, and identifying the enzymes responsible for this activity will improve our understanding of the drug metabolism and pharmacokinetic (DMPK) properties of alkyl- or phenolic thiol-containing therapeutics.


Assuntos
Fígado , Metiltransferases , Humanos , Células HeLa , Metiltransferases/metabolismo , Fígado/metabolismo , Proteínas Recombinantes , Compostos de Sulfidrila
2.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151817

RESUMO

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Zinco
3.
Methods Enzymol ; 690: 341-368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858534

RESUMO

Time-dependent inactivation (TDI) of cytochrome P450 (CYP) enzymes may result in clinical drug-drug interactions (DDIs). Therefore, designing out of CYP TDI prior to advancing a compound to clinical development is highly desirable. As TDI of CYP3A is a common occurrence in small molecule drug discovery, high-throughput methods are sought to help identify the mechanism of inactivation and enable design strategies to mitigate CYP3A TDI. CYP inactivation via modification or destruction of the prosthetic heme group results in loss of the ability of the enzyme to bind carbon monoxide. Additionally, formation of a tight binding complex with the heme iron, referred to as a metabolic intermediate (MI) complex, also results in enzyme inactivation. The methods described herein provide a high-throughput means of identifying and comparing compounds for their ability to inactivate via destruction/modification of the heme via loss of the ability to bind carbon monooxide, as well as via formation of an MI complex.


Assuntos
Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Heme/metabolismo
4.
Sci Rep ; 11(1): 4857, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649426

RESUMO

Methylation of alkyl thiols is a biotransformation pathway designed to reduce thiol reactivity and potential toxicity, yet the gene and protein responsible for human alkyl thiol methyltransferase (TMT) activity remain unknown. Here we demonstrate with a range of experimental approaches using cell lines, in vitro systems, and recombinantly expressed enzyme, that human methyltransferase-like protein 7B (METTL7B) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to hydrogen sulfide (H2S) and other exogenous thiol small molecules. METTL7B gene modulation experiments, including knockdown in HepG2 cells and overexpression in HeLa cells, directly alter the methylation of the drug captopril, a historic probe substrate for TMT activity. Furthermore, recombinantly expressed and purified wild-type METTL7B methylates several thiol compounds, including H2S, 7α-thiospironolactone, L-penicillamine, and captopril, in a time- and concentration-dependent manner. Typical for AdoMet-dependent small molecule methyltransferases, S-adenosyl-L-homocysteine (AdoHcy) inhibited METTL7B activity in a competitive fashion. Similarly, mutating a conserved aspartate residue, proposed to anchor AdoMet into the active site, to an alanine (D98A) abolished methylation activity. Endogenous thiols such as glutathione and cysteine, or classic substrates for other known small molecule S-, N-, and O-methyltransferases, were not substrates for METTL7B. Our results confirm, for the first time, that METTL7B, a gene implicated in multiple disease states including rheumatoid arthritis and breast cancer, encodes a protein that methylates small molecule alkyl thiols. Identifying the catalytic function of METTL7B will enable future pharmacological research in disease pathophysiology where altered METTL7B expression and, potentially H2S levels, can disrupt cell growth and redox state.


Assuntos
Captopril/química , Proteínas de Transporte/química , Sulfeto de Hidrogênio/química , Metiltransferases/química , Captopril/farmacocinética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HeLa , Células Hep G2 , Humanos , Sulfeto de Hidrogênio/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA