Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecol Evol ; 13(7): e10294, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441096

RESUMO

As the global temperature rises in the coming decades, Aedes albopictus is expected to invade and establish in South East England, where Culex pipiens is currently the most common native mosquito species. Biocontrol measures that use local cyclopoid copepods against Ae. albopictus may be compromised if the copepods prefer alternate Cx. pipiens prey. In this study, I assessed the predation efficiency of Megacyclops viridis copepods against Ae. albopictus larvae from France and larvae that hatched from egg rafts of Cx. pipiens collected in South East England. The experiments were conducted at 15 and 25°C, which are representative of present and future summer temperatures in South East England. Ae. albopictus larvae that survived the course of the experiment in the predator-absent controls were significantly smaller than Cx. pipiens larvae that survived in the absence of predation. The background mortality of Cx. pipiens larvae increased with the 10-degree increase in temperature, and the smaller size of surviving Cx. pipiens larvae at 25°C, relative to survivors at 15°C, suggests that larger Cx. pipiens larvae were more likely to die at the higher temperature setting. Across all experimental treatments, the ratio of copepod body length to mean prey length, based on larval lengths of survivors from the corresponding predator-absent controls, was a significant predictor of the copepod's predation efficiency. Adding temperature setting to the predation efficiency model as a predictor did not improve model fit. Within the mixed prey treatments, the predation efficiency of M. viridis was 34.5 percentage points higher against Ae. albopictus prey than against Cx. pipiens prey. The higher predation efficiency that M. viridis exhibited against invasive Ae. albopictus prey, likely due to the smaller size of these larvae, supports the future use of M. viridis as a biocontrol agent in the United Kingdom.

2.
Insects ; 13(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35206728

RESUMO

Cyclopoid copepods have been applied successfully to limit populations of highly invasive Aedes albopictus mosquitoes that can transmit diseases of public health importance. However, there is concern that changes in certain mosquito traits, induced by exposure to copepod predation, might increase the risk of disease transmission. In this study, third instar Ae. albopictus larvae (focal individuals) were exposed to Megacyclops viridis predator cues associated with both the consumption of newly hatched mosquito larvae and attacks on focal individuals. The number of newly hatched larvae surrounding each focal larva was held constant to control for density effects on size, and the focal individual's day of pupation and wing length were recorded for each replicate. Exposing late instar Ae. albopictus to predation decreased their chances of surviving to adulthood, and three focal larvae that died in the predator treatment showed signs of melanisation, indicative of wounding. Among surviving focal Ae. albopictus, no significant difference in either pupation day or wing length was observed due to copepod predation. The absence of significant sublethal impacts from M. viridis copepod predation on surviving later stage larvae in this analysis supports the use of M. viridis as a biocontrol agent against Ae. albopictus.

3.
Insects ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135459

RESUMO

Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.

4.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044908

RESUMO

Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.


Mosquitoes are often referred to as the deadliest animals on earth because some species spread malaria, West Nile virus or other dangerous diseases when they bite humans and other animals. Adult mosquitoes fly to streams, ponds and other freshwater environments to lay their eggs. When the eggs hatch, the young mosquitoes live in the water until they are ready to grow wings and transform into adults. In the water, the young mosquitoes are particularly vulnerable to being eaten by dragonfly larvae, fish and other predators. When adult females are choosing where to lay their eggs, they can use their sense of smell to detect these predators and attempt to avoid them. Along with eating the mosquitoes, the predators may also reduce mosquito populations in other ways. For example, predators can disrupt feeding among young mosquitoes, which may affect the time that it takes for them to grow into adults or the size of their bodies once they reach the adult stage. Although the impacts of different predators have been tested separately in multiple settings, the overall effects of predators on the ability of mosquitoes to spread diseases to humans remain unclear. To address this question, Russell, Herzog et al. used an approach called meta-analysis on data from previous studies. The analysis found that along with increasing the death rates of mosquitoes, the presence of predators also leads to a reduction in the body size of those mosquitoes that survive, causing them to have shorter lifespans and fewer offspring. Russell, Herzog et al. found that one type of mosquito known as Culex ­ which carries West Nile virus ­ avoided laying its eggs near predators. During droughts, increased predation in streams, ponds and other aquatic environments may lead adult female Culex mosquitoes to lay their eggs closer to residential areas with fewer predators. Russell, Herzog et al. propose that this may be one reason why outbreaks of West Nile virus in humans are more likely to occur during droughts. In the future, these findings may help researchers to predict outbreaks of West Nile virus, malaria and other diseases carried by mosquitoes more accurately. Furthermore, the work of Russell, Herzog et al. provides examples of mosquito predators that could be used as biocontrol agents to decrease numbers of mosquitoes in certain regions.


Assuntos
Ambystomatidae , Culicidae/fisiologia , Transmissão de Doença Infecciosa , Peixes , Cadeia Alimentar , Insetos , Mosquitos Vetores/fisiologia , Animais , Tamanho Corporal , Culicidae/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mosquitos Vetores/crescimento & desenvolvimento , Filogenia , Dinâmica Populacional
5.
PLoS One ; 16(2): e0246178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529245

RESUMO

During range expansion, invasive species can experience new thermal regimes. Differences between the thermal performance of local and invasive species can alter species interactions, including predator-prey interactions. The Asian tiger mosquito, Aedes albopictus, is a known vector of several viral diseases of public health importance. It has successfully invaded many regions across the globe and currently threatens to invade regions of the UK where conditions would support seasonal activity. We assessed the functional response and predation efficiency (percentage of prey consumed) of the cyclopoid copepods Macrocyclops albidus and Megacyclops viridis from South East England, UK against newly-hatched French Ae. albopictus larvae across a relevant temperature range (15, 20, and 25°C). Predator-absent controls were included in all experiments to account for background prey mortality. We found that both M. albidus and M. viridis display type II functional response curves, and that both would therefore be suitable biocontrol agents in the event of an Ae. albopictus invasion in the UK. No significant effect of temperature on the predation interaction was detected by either type of analysis. However, the predation efficiency analysis did show differences due to predator species. The results suggest that M. viridis would be a superior predator against invasive Ae. albopictus larvae due to the larger size of this copepod species, relative to M. albidus. Our work highlights the importance of size relationships in predicting interactions between invading prey and local predators.


Assuntos
Aedes , Tamanho Corporal , Copépodes/anatomia & histologia , Espécies Introduzidas/estatística & dados numéricos , Larva , Comportamento Predatório , Temperatura , Animais , Controle Biológico de Vetores
6.
Chemosphere ; 222: 295-304, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30710759

RESUMO

The northern cardinal (Cardinalis cardinalis) is a good indicator species for environmental contaminants because it does not migrate and its range covers a diversity of habitats, including metropolitan Atlanta, GA and the geographically isolated Hawaiian Islands. In addition, the cardinal is often found near people's homes, making it likely to be exposed to the same outdoor elements, including soil, groundwater, and air, that surrounding humans experience. In this study, blood serum concentrations of 12 per- and polyfluoroalkyl substances (PFASs) were measured in 40 cardinals from Atlanta and 17 cardinals from the Big Island (Hawaii), HI. We observed significantly higher median concentrations of four PFASs and significantly higher detection frequencies of seven PFASs in the cardinals from Atlanta, relative to the PFAS median concentrations and detection frequencies observed in the cardinals from Hawaii (α = 0.05). Among the PFASs measured, perfluorooctane sulfonate (PFOS) was observed in the highest concentrations. A linear regression model controlling for sex, age, and airport distance did not explain PFOS variation within the Atlanta samples, but a similar model explained 90% of PFOS variation within the Hawaii samples. To our knowledge, these are the first measurements of PFASs in northern cardinals.


Assuntos
Ácidos Alcanossulfônicos/sangue , Aves/metabolismo , Ecossistema , Fluorocarbonos/sangue , Espécies Sentinelas/metabolismo , Animais , Aves/sangue , Poluentes Ambientais/análise , Georgia , Havaí , Humanos , Espécies Sentinelas/sangue
8.
J Air Waste Manag Assoc ; 67(1): 3-16, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27027572

RESUMO

Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM2.5), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM2.5 concentration. Both PM2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM2.5 concentration increased from an adjusted R2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM2.5 at 12 EPA ground stations; further research on PM2.5 emissions from unconventional natural gas extraction is needed. IMPLICATIONS: With many coal-fired power plants scheduled to close across the United States in the coming years, there is interest in the potential impact on regional PM2.5 concentrations. In southwestern Pennsylvania, recent coal-fired power plant closings were coupled with a boom in unconventional natural gas extraction. Natural gas is currently seen as an economically viable bridge fuel between coal and renewable energy. This study provides policymakers with more information on the potential ambient concentration changes associated with coal-fired power plant closings as the nation's energy reliance shifts toward natural gas.


Assuntos
Aerossóis/química , Poluição do Ar/análise , Carvão Mineral/análise , Material Particulado/química , Centrais Elétricas , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gás Natural/análise , Pennsylvania
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA