Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Chem Chem Phys ; 24(39): 24562-24569, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193851

RESUMO

The identification of polymorphs in organic semiconductors allows for establishing structure-property relationships and gaining understanding of microscopic charge transport physics. Thin films of 2,7-bis(octyloxy)[1]benzothieno[3,2-b]-benzothiophene (C8O-BTBT-OC8) exhibit a substrate-induced phase (SIP) that differs from the bulk structure, with important implications for the electrical performance in organic field effect transistors (OFETs). Here we combine grazing incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) to study how temperature affects the morphology and structure of C8O-BTBT-OC8 films grown by physical vapor deposition on SiO2. We report a structural transition for C8O-BTBT-OC8 films, from the SIP encountered at room temperature (RT) to a high temperature phase (HTP) when the films are annealed at a temperature T ≥ 90 °C. In this HTP structure, the molecules are packed with a tilt angle (≈39° respect to the surface normal) and an enlarged in-plane unit cell. Although the structural transition is reversible on cooling at RT, AFM reveals that molecular layers at the SiO2 interface can remain with the HTP structure, buried under the film ordered in the SIP. For annealing temperatures close to 150 °C, dewetting occurs leading to a more complex morphological and structural scenario upon cooling, with coexistence of different molecular tilts. Because the molecular packing at the interface has direct impact in the charge carrier mobility of OFETs, identifying the different polymorphs of a material in the thin film form and determining their stability at the interfaces are key factors for device optimization.

2.
Chemphyschem ; 19(8): 993-1000, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29498172

RESUMO

The presence of a substrate-induced polymorph of 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene is probed in microscopic crystals and in thin films. Two experimental techniques are used: lattice phonon Raman and IR spectroscopy. The bulk crystal and substrate-induced phase have an entirely different molecular packing, and therefore, their Raman spectra are characteristic fingerprints of the respective polymorphs. These spectra can be unambiguously assigned to the individual polymorphs. Drop-cast and spin-coated thin films on solid substrates are investigated in the as-prepared state and after solvent-vapor annealing. Because Raman spectroscopy is less sensitive with decreasing film thickness, IR spectroscopy is shown to be a more feasible tool for phase detection. The surface-induced phase is mainly present in the as-prepared thin films, whereas the bulk phase is present after solvent-vapor annealing. This result suggests that the surface-induced phase is a metastable polymorph.

3.
Chemphyschem ; 17(8): 1174-9, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853087

RESUMO

The structural organization and evolution of the organic semiconducting molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]-benzothiophene on a soft matrix is studied. Thin films of a blend formed from polystyrene and the molecule were prepared by spin-coating onto silicon substrates, which were subsequently studied by using a combination of microscopy and scattering techniques. The organic semiconducting molecule segregated to the surface and developed a phase with a different structure to the bulk, as in the case of a substrate induced phase observed previously. Under a solvent vapor annealing procedure, the growth of micrometer-sized tetragonal crystals onto the polymer surface was observed, which was not evidenced for the silicon substrates.

4.
Chemphyschem ; 16(18): 3992-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26346288

RESUMO

Phthalocyanines (Pcs) have attracted a lot of interest as small molecules for organic electronics. However, some excited-state properties of metal-free phthalocyanines, as for example, the dynamics of the transition between the nondegenerate Qx and Qy states in a metal-free phthalocyanine, have not been fully established. This effect results in a blue-shifted shoulder with low intensity in the Pc fluorescence spectrum. This shoulder was suggested to be related to emission from the more energetic Qy state. By using ultrafast femtosecond transient absorption, we have found a clear equilibrium between the Qx and Qy state of metal-free phthalocyanines in solution.

5.
Photochem Photobiol Sci ; 13(4): 634-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24496463

RESUMO

Synthetic chlorins can accommodate diverse substituents about the macrocycle perimeter. Simple auxochromes (e.g., vinyl, acetyl, phenyl) allow systematic tuning of spectral and photophysical features. More extensive spectral tailoring may be achieved by using more potent, highly conjugated substituents that themselves bring new absorption into a target spectral region, if deleterious excited-state quenching processes can be avoided. To explore such an expanded substituent space, herein the spectral and photophysical properties of four chlorin-chalcones are reported. The molecules are free base and zinc chlorins with substituents at the 13-position that include a chalcone and an extended chalcone derived by reaction of the 13-acetylchlorin with benzaldehyde and all-trans-retinal, respectively. Measurements of the spectral and photophysical properties (Φf, τs, kf, kic, kisc) are accompanied by density functional calculations that examine the characteristics of the frontier molecular orbitals. The chlorin-chalcones in nonpolar (toluene) and polar (dimethylsulfoxide) media exhibit bathochromically shifted (and intense) Qy absorption bands. The presence of the retinylidene group adds new absorption in the blue-green region where the chlorins are typically transparent; excitation in this region leads to quantitative formation of the chlorin Qy excited state. The spectral properties generally correlate with substituent effects on the frontier MOs. The four chlorin-chalcones in the solvent toluene have high fluorescence yields (0.24-0.30) and multi-nanosecond singlet excited-state lifetimes (3.7-8.4 ns), in addition to the added absorption imparted by the chalcone moiety. Collectively, the studies reported herein provide insight into the fundamental properties of chlorins and illustrate the utility of chalcones as a means of both tuning and augmenting the spectral properties of these chromophores.

6.
Chem Mater ; 36(2): 881-891, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38282684

RESUMO

Helicoidal crystallites in rhythmically banded spherulites manifest spectacular optical patterns in small molecules and polymers. It is shown that concentric optical bands indicating crystallographic orientations typically lose coherence (in-phase twisting) with growth from the center of nucleation. Here, coherence is shown to increase as the twist period decreases for seven molecular crystals grown from the melt. This dependence was correlated to crystallite fiber thickness and length, as well as crystallite branching frequency, a parameter that was extracted from scanning electron micrographs, and supported by numerical simulations. Hole mobilities for 2,5-didodecyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP-C12) measured by using organic field-effect transistors demonstrated that more incoherent boundaries between optical bands in spherulites lead to higher charge transport for films with the same twist period. This was rationalized by combining our growth model with electrodynamic simulations. This work illustrates the emergence of complexity in crystallization processes (spherulite formation) that arises in the extra variable of helicoidal radial twisting. The details of the patterns analyzed here link the added complexity in crystal growth to the electronic and optical properties of the thin films.

7.
Chemphyschem ; 14(11): 2554-9, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23712939

RESUMO

The order in molecular monolayers is a crucial aspect for their technological application. However, the preparation of defined monolayers by spin-coating is a challenge, since the involved processes are far from thermodynamic equilibrium. In the work reported herein, the dynamic formation of dioctyl-benzothienobenzothiophene monolayers is explored as a function of temperature by using X-ray scattering techniques and atomic force microscopy. Starting with a disordered monolayer after the spin-coating process, post-deposition self-reassembly at room temperature transforms the initially amorphous layer into a well-ordered bilayer structure with a molecular herringbone packing, whereas at elevated temperature the formation of crystalline islands occurs. At the temperature of the liquid-crystalline crystal-smectic transition, rewetting of the surface follows resulting in a complete homogeneous monolayer. By subsequent controlled cooling to room temperature, cooling-rate-dependent kinetics is observed; at rapid cooling, a stable monolayer is preserved at room temperature, whereas slow cooling causes bilayer structures. Increasing the understanding and control of monolayer formation is of high relevance for achieving ordered functional monolayers with defined two-dimensional packing, for future applications in the field of organic electronics.

8.
J Org Chem ; 78(15): 7741-8, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23848373

RESUMO

The synthesis of 1,6-, 2,7-, 3,8-, and 4,9-isomers of dibromo- and didodecyl[1]benzothieno[3,2-b][1]benzothiophenes, via the stilbene pathway, is described. Starting from the synthesis of bromo-2-(methylthio)benzaldehydes, a series of functionalization, McMurry coupling, and finalising cyclization reactions were explored. The stereochemistry of the cyclization mechanism was investigated. Using this methodology didodecyl[1]benzothieno[3,2-b][1]benzothiophenes were formed in overall yields of 5-32%.


Assuntos
Estilbenos/química , Tiofenos/química , Estrutura Molecular , Estereoisomerismo
9.
Adv Mater ; 34(38): e2203842, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986443

RESUMO

Many molecular crystals (approximately one third) grow as twisted, helicoidal ribbons from the melt, and this preponderance is even higher in restricted classes of materials, for instance, charge-transfer complexes. Previously, twisted crystallites of such complexes present an increase in carrier mobilities. Here, the effect of twisting on charge mobility is better analyzed for a monocomponent organic semiconductor, 2,5-bis(3-dodecyl-2-thienyl)-thiazolo[5,4-d]thiazole (BDT), that forms twisted crystals with varied helicoidal pitches and makes possible a correlation of twist strength with carrier mobility. Films are analyzed by X-ray scattering and Mueller matrix polarimetry to characterize the microscale organization of the polycrystalline ensembles. Carrier mobilities of organic field-effect transistors are five times higher when the crystals are grown with the smallest pitches (most twisted), compared to those with the largest pitches, along the fiber elongation direction. A tenfold increase is observed along the perpendicular direction. Simulation of electrical potential based on scanning electron microscopy images and density functional theory suggests that the twisting-enhanced mobility is mainly controlled by the fiber organization in the film. A greater number of tightly packed twisted fibers separated by numerous smaller gaps permit better charge transport over the film surface compared to fewer big crystallites separated by larger gaps.

10.
FASEB J ; 24(9): 3160-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20385618

RESUMO

Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD(50) approximately 0.1 microM) when compared with controls such as the FDA-approved Photofrin (LD(50) approximately 10 microM) and clinically tested LuTex (LD(50) approximately 1 microM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular-orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).


Assuntos
Melanoma/tratamento farmacológico , Fotoquimioterapia/métodos , Porfirinas/síntese química , Porfirinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estrutura Molecular , Porfirinas/química
11.
J Mater Chem C Mater ; 9(22): 7186-7193, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34211720

RESUMO

Thin films of the organic semiconductor Ph-BTBT-10 and blends of this material with polystyrene have been deposited by a solution shearing technique at low (1 mm s-1) and high (10 mm s-1) coating velocities and implemented in organic field-effect transistors. Combined X-ray diffraction and electrical characterisation studies prove that the films coated at low speed are significantly anisotropic. The highest mobility is found along the coating direction, which corresponds to the crystallographic a-axis. In contrast, at high coating speed the films are crystallographically less ordered but with better thin film homogeneity and exhibit isotropic electrical characteristics. Best mobilities are found in films prepared at high coating speeds with the blended semiconductor. This work demonstrates the interplay between the crystal packing and thin film morphology and uniformity and their impact on the device performance.

12.
Chem Mater ; 33(4): 1455-1461, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33642680

RESUMO

The molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) is an organic semiconductor with outstanding performance in thin-film transistors. The asymmetric shape of the molecule causes an unusual phase behavior, which is a result of a distinct difference in the molecular arrangement between the head-to-head stacking of the molecules versus head-to-tail stacking. Thin films are prepared at elevated temperatures by crystallization from melt under controlled cooling rates, thermal-gradient crystallization, and bar coating at elevated temperatures. The films are investigated using X-ray diffraction techniques. Unusual peak-broadening effects are found, which cannot be explained using standard models. The modeling of the diffraction patterns with a statistic variation of the molecules reveal that a specific type of molecular disorder is responsible for the observed peak-broadening phenomena: the known head-to-head stacking within the crystalline phase is disturbed by the statistic integration of reversed (or flipped) molecules. It is found that 7-15% of the molecules are integrated in a reversed way, and these fractions are correlated with cooling rates during the sample preparation procedure. Temperature-dependent in situ experiments reveal that the defects can be healed by approaching the transition from the crystalline state to the smectic E state at a temperature of 145 °C. This work identifies and quantifies a specific crystalline defect type within thin films of an asymmetric rodlike conjugated molecule, which is caused by the crystallization kinetics.

13.
Antimicrob Agents Chemother ; 54(9): 3834-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20625146

RESUMO

Photodynamic inactivation is a rapidly developing antimicrobial treatment that employs a nontoxic photoactivatable dye or photosensitizer in combination with harmless visible light to generate reactive oxygen species that are toxic to cells. Tetrapyrroles (e.g., porphyrins, chlorins, bacteriochlorins) are a class of photosensitizers that exhibit promising characteristics to serve as broad-spectrum antimicrobials. In order to bind to and efficiently penetrate into all classes of microbial cells, tetrapyrroles should have structures that contain (i) one or more cationic charge(s) or (ii) a basic group. In this report, we investigate the use of new stable synthetic bacteriochlorins that have a strong absorption band in the range 720 to 740 nm, which is in the near-infrared spectral region. Four bacteriochlorins with 2, 4, or 6 quaternized ammonium groups or 2 basic amine groups were compared for light-mediated killing against a gram-positive bacterium (Staphylococcus aureus), a gram-negative bacterium (Escherichia coli), and a dimorphic fungal yeast (Candida albicans). Selectivity was assessed by determining phototoxicity against human HeLa cancer cells under the same conditions. All four compounds were highly active (6 logs of killing at 1 microM or less) against S. aureus and showed selectivity for bacteria over human cells. Increasing the cationic charge increased activity against E. coli. Only the compound with basic groups was highly active against C. albicans. Supporting photochemical and theoretical characterization studies indicate that (i) the four bacteriochlorins have comparable photophysical features in homogeneous solution and (ii) the anticipated redox characteristics do not correlate with cell-killing ability. These results support the interpretation that the disparate biological activities observed stem from cellular binding and localization effects rather than intrinsic electronic properties. These findings further establish cationic bacteriochlorins as extremely active and selective near-infrared activated antimicrobial photosensitizers, and the results provide fundamental information on structure-activity relationships for antimicrobial photosensitizers.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Porfirinas/farmacologia , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Células HeLa , Humanos , Luz , Microscopia Confocal , Estrutura Molecular , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/química , Porfirinas/efeitos adversos , Porfirinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 1): 71-78, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830780

RESUMO

In this study, the nature and characteristics of the intramolecular and intermolecular interactions in crystal structures of the fluoro-substituted 7,7,8,8-tetracyanoquinodimethane (TCNQ) family of molecules, i.e. Fx-TCNQ (x = 0, 2, 4), are explored. The molecular geometry of the reported crystal structures is directly dependent on the degree of fluorination in the molecule, which consequently also results in the presence of an intramolecular N[triple-bond]C...F-C π-hole tetrel bond. Apart from this, the energy framework analysis performed along the respective transport planes provides new insights into the energetic distribution in this class of molecules.

15.
Adv Mater ; 31(43): e1902407, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31512304

RESUMO

Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high-mobility molecular semiconductors, state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electron-phonon coupling constants are combined with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way, the long-axis sliding motion is identified as a "killer" phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high-mobility molecular semiconductors is suggested.

16.
Org Lett ; 10(13): 2673-6, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18533673

RESUMO

Two new generations of ligands for cytochrome c oxidase mimicking have been designed and synthesized via an efficient, convergent, and versatile synthesis. These porphyrins are functionalized with both an internal nitrogen base on one side and a triaza (N3) or a triaza-phenol (N3O) moiety on the other side, attached to the macrocycle by various spacers. Unlike tailed porphyrins, the triaza motif as well as the nitrogen base are linked by two points.


Assuntos
Compostos Aza/química , Materiais Biomiméticos/síntese química , Complexo IV da Cadeia de Transporte de Elétrons/química , Fenóis/química , Porfirinas/síntese química , Sítios de Ligação , Materiais Biomiméticos/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Porfirinas/química
17.
Org Lett ; 10(10): 1931-4, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18422289

RESUMO

Bacteriochlorins absorb strongly in the near-infrared spectral region and hence are ideally suited for diverse photomedical applications, yet naturally occurring bacteriochlorins have limited stability and synthetic malleability. A de novo route has been exploited to prepare synthetic bacteriochlorins that bear a geminal dimethyl group in each pyrroline ring for stability and a symmetrically branched 1,5-dimethoxypentyl group attached to each pyrrole ring for solubility in lipophilic media.


Assuntos
Porfirinas/química , Porfirinas/síntese química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Estabilidade de Medicamentos , Estrutura Molecular , Estereoisomerismo
18.
J Org Chem ; 73(15): 5806-20, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18576691

RESUMO

Bacteriochlorins are attractive candidates for photodynamic therapy (PDT) of diverse medical indications owing to their strong absorption in the near-infrared (NIR) region, but their use has been stymied by lack of access to stable, synthetically malleable molecules. To overcome these limitations, a synthetic free base 3,13-dibromobacteriochlorin (BC-Br(3)Br(13)) has been exploited as a building block in the synthesis of diverse bacteriochlorins via Pd-mediated coupling reactions (Sonogashira, Suzuki, and reductive carbonylation). Each bacteriochlorin is stable to adventitious dehydrogenation by virtue of the presence of a geminal dimethyl group in each pyrroline ring. The target bacteriochlorins bear cationic, lipophilic, or amphipathic substituents at the 3- and 13- (beta-pyrrolic) positions. A dicarboxybacteriochlorin was converted to amide derivatives via the intermediate diacid chloride. A diformylbacteriochlorin was subjected to reductive amination to give aminomethyl derivatives. A set of 3,5-disubstituted aryl groups bearing lipophilic or amphipathic groups was introduced via Suzuki coupling. Altogether 22 free base bacteriochlorins have been prepared. Eight aminoalkylbacteriochlorins were quaternized with methyl iodide at two or four amine sites per molecule, which resulted in water solubility. Each bacteriochlorin exhibits a Q(y) absorption band in the range of 720-772 nm. The ability to introduce a wide variety of peripheral functional groups makes these bacteriochlorins attractive candidates for diverse applications in photomedicine including PDT in the NIR region.


Assuntos
Lipídeos/química , Porfirinas/química , Água/química , Ácidos/química , Cátions/química , Compostos Clorados/química , Ésteres/química , Estrutura Molecular , Paládio/química , Espectrofotometria
19.
Nat Commun ; 9(1): 278, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348430

RESUMO

Martensitic transition is a solid-state phase transition involving cooperative movement of atoms, mostly studied in metallurgy. The main characteristics are low transition barrier, ultrafast kinetics, and structural reversibility. They are rarely observed in molecular crystals, and hence the origin and mechanism are largely unexplored. Here we report the discovery of martensitic transition in single crystals of two different organic semiconductors. In situ microscopy, single-crystal X-ray diffraction, Raman and nuclear magnetic resonance spectroscopy, and molecular simulations combined indicate that the rotating bulky side chains trigger cooperative transition. Cooperativity enables shape memory effect in single crystals and function memory effect in thin film transistors. We establish a molecular design rule to trigger martensitic transition in organic semiconductors, showing promise for designing next-generation smart multifunctional materials.

20.
J Phys Chem Lett ; 8(15): 3690-3695, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28731723

RESUMO

A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm-1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA