Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(47): 29371-29380, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33229540

RESUMO

Humans readily form social impressions, such as attractiveness and trustworthiness, from a stranger's facial features. Understanding the provenance of these impressions has clear scientific importance and societal implications. Motivated by the efficient coding hypothesis of brain representation, as well as Claude Shannon's theoretical result that maximally efficient representational systems assign shorter codes to statistically more typical data (quantified as log likelihood), we suggest that social "liking" of faces increases with statistical typicality. Combining human behavioral data and computational modeling, we show that perceived attractiveness, trustworthiness, dominance, and valence of a face image linearly increase with its statistical typicality (log likelihood). We also show that statistical typicality can at least partially explain the role of symmetry in attractiveness perception. Additionally, by assuming that the brain focuses on a task-relevant subset of facial features and assessing log likelihood of a face using those features, our model can explain the "ugliness-in-averageness" effect found in social psychology, whereby otherwise attractive, intercategory faces diminish in attractiveness during a categorization task.


Assuntos
Beleza , Reconhecimento Facial/fisiologia , Julgamento/fisiologia , Modelos Psicológicos , Confiança/psicologia , Encéfalo/fisiologia , Simulação por Computador , Face/anatomia & histologia , Feminino , Humanos , Funções Verossimilhança , Masculino , Predomínio Social , Adulto Jovem
2.
Cogsci ; 42: 1080-1086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34355219

RESUMO

Face processing plays a critical role in human social life, from differentiating friends from enemies to choosing a life mate. In this work, we leverage various computer vision techniques, combined with human assessments of similarity between pairs of faces, to investigate human face representation. We find that combining a shape- and texture-feature based model (Active Appearance Model) with a particular form of metric learning, not only achieves the best performance in predicting human similarity judgments on held-out data (both compared to other algorithms and to humans), but also performs better or comparable to alternative approaches in modeling human social trait judgment (e.g. trustworthiness, attractiveness) and affective assessment (e.g. happy, angry, sad). This analysis yields several scientific findings: (1) facial similarity judgments rely on a relative small number of facial features (8-12), (2) race- and gender-informative features play a prominent role in similarity perception, (3) similarity-relevant features alone are insufficient to capture human face representation, in particular some affective features missing from similarity judgments are also necessary for constructing the complete psychological face representation.

3.
Adv Neural Inf Process Syst ; 31: 2781-2790, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34366637

RESUMO

Understanding how humans and animals learn about statistical regularities in stable and volatile environments, and utilize these regularities to make predictions and decisions, is an important problem in neuroscience and psychology. Using a Bayesian modeling framework, specifically the Dynamic Belief Model (DBM), it has previously been shown that humans tend to make the default assumption that environmental statistics undergo abrupt, unsignaled changes, even when environmental statistics are actually stable. Because exact Bayesian inference in this setting, an example of switching state space models, is computationally intensive, a number of approximately Bayesian and heuristic algorithms have been proposed to account for learning/prediction in the brain. Here, we examine a neurally plausible algorithm, a special case of leaky integration dynamics we denote as EXP (for exponential filtering), that is significantly simpler than all previously suggested algorithms except for the delta-learning rule, and which far outperforms the delta rule in approximating Bayesian prediction performance. We derive the theoretical relationship between DBM and EXP, and show that EXP gains computational efficiency by foregoing the representation of inferential uncertainty (as does the delta rule), but that it nevertheless achieves near-Bayesian performance due to its ability to incorporate a "persistent prior" influence unique to DBM and absent from the other algorithms. Furthermore, we show that EXP is comparable to DBM but better than all other models in reproducing human behavior in a visual search task, suggesting that human learning and prediction also incorporates an element of persistent prior. More broadly, our work demonstrates that when observations are information-poor, detecting changes or modulating the learning rate is both difficult and thus unnecessary for making Bayes-optimal predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA