Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Inorg Chem ; 57(22): 14337-14346, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30372069

RESUMO

The solution chemistry of a chelator developed for 227Th targeted alpha therapy was probed. The compound of interest is an octadentate ligand comprising four N-methyl-3-hydroxy-pyridine-2-one metal-binding units, two tertiary amine groups, and one carboxylate arm appended for bioconjugation. The seven p Ka values of the ligand and the stability constants of complexes formed with Th(IV), Hf(IV), Zr(IV), Gd(III), Eu(III), Al(III), and Fe(III) were determined. The ligand exhibits extreme thermodynamic selectivity toward tetravalent metal ions with a ca. 20 orders of magnitude difference between the formation constant of the Th(IV) species formed at physiological pH, namely [ThL]-, and that of its Eu(III) analogue. Likewise, log ß110 values of 41.7 ± 0.3 and 26.9 ± 0.3 (T = 25 °C) were measured for [ThL]- and [FeIIIL]2-, respectively, highlighting the high affinity and selectivity of the ligand for Th ions over potentially competing endogenous metals. Single crystal X-ray analysis of the Fe(III) complex revealed a dinuclear 2:2 metal:chelator complex crystallizing in the space group P1̅. The formation of this dimeric species is likely favored by several intramolecular hydrogen bonds and the protonation state of the chelator in acidic media. LIII edge EXAFS data on the Th(IV) complexes of both the ligand and a monoclonal antibody conjugate revealed the expected mononuclear 1:1 metal:chelator coordination environment. This was also confirmed by high resolution mass spectrometry. Finally, kinetic experiments demonstrated that labeling the bioconjugated ligand with Th(IV) could be achieved and completed after 1 h at room temperature, reinforcing the high suitability of this chelator for 227Th targeted alpha therapy.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Piridonas/química , Compostos Radiofarmacêuticos/química , Tório/química , Anticorpos Monoclonais Humanizados/química , Cinética , Ligantes , Estrutura Molecular , Termodinâmica , Espectroscopia por Absorção de Raios X
2.
Drug Dev Ind Pharm ; 43(2): 225-233, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27628177

RESUMO

Targeted thorium conjugates (TTCs) are being explored as a potential future platform for specific tumor targeting pharmaceuticals. In TTCs, the alpha emitting radionuclide thorium-227 (227Th) with a half-life of 18.697 d is labeled to targeting moieties, such as monoclonal antibodies (mAbs). The amount of daughter nuclide radium-223 (223Ra, t1/2 = 11.435 d) will increase during manufacture and distribution, and so a technology for purification is required to assure an acceptable level of 223Ra is administrated to the patient. Since 223Ra is the only progeny of 227Th with a long half-life (days), the progenies of 223Ra will have a very limited stay in the formulation once 223Ra is removed. The focus in this study has, therefore, been on the removal of 223Ra. In this study, the sorption and separation of 223Ra (radium(II)) and 227Th (thorium(IV)) on cation exchange columns has been evaluated as a purification method of decayed 227Th (i.e. prior to radiolabelling of a mAb and formation of TTC). The goal is to minimize the sorption of 227Th and maximize the sorption of 223Ra. Statistical experimental design with formulation and process parameters, including buffered formulations comprising citrate and acetate, at various concentrations and pH, presence of free radical scavenger and chelator, and resin amount have been evaluated for impact on the purification process. The studies have been interpreted by the aid of multivariate data analysis. The correlations between design of experimental variables and sorption are summarized by regression models. The predictive accuracy of radionuclide sorption was given by standard deviation and 95% confidence intervals originating from statistical cross validation. Experimental results and statistical models for citrate-buffered formulations verified reproducible and acceptable sorption levels of 223Ra and 227Th under selected conditions. For acetate-buffered formulations, prediction of 227Th sorption was influenced by complex variable relationships and hence a risk of obtaining irreproducibility. Fine-tuned variable levels showed, however, variable combinations predicting high sorption of 223Ra (>90%) and low sorption of 227Th (<3%) also for the acetate-buffered formulations. The optimal separation conditions should be decided based on tuning the variables levels for 223Ra in the citrate-buffered formulations, while for acetate, the optimal separation should be based on tuning variable levels for 227Th sorption. The ionic strength of the formulation also seemed to affect the radionuclide sorption. Labeling of an antibody-chelator conjugate with purified 227Th (i.e. preparation of TTC) was successful in the selected citrate-buffered formulations tested.


Assuntos
Cátions/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Rádio (Elemento)/química , Compostos de Tório/química , Tório/química , Adsorção , Meia-Vida , Concentração de Íons de Hidrogênio
3.
Drug Dev Ind Pharm ; 43(9): 1440-1449, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28402142

RESUMO

Tumor targeting pharmaceuticals will play a crucial role in future pharma pipelines. The targeted thorium conjugate (TTC) therapeutic platform could provide real benefit to patients, whereby targeting moieties like monoclonal antibodies are radiolabelled with the alpha-emitting radionuclide thorium-227 (227Th, t1/2 = 18.7 days). A potential problem could be the accumulation of the long-lived daughter nuclide radium-223 (223Ra, t1/2 = 11.4 days) in the drug product during manufacturing and distribution. Therefore, the level of 223Ra must be standardized before administration to the patient. The focus in this study has been the removal of 223Ra, as the other progenies will have a very limited stay in the formulation. In this study, the purification of TTCs labeled with decayed 227Th has been explored. Columns packed with a strong cation exchange resin have been used to sequester 223Ra. The separation of TTC from 223Ra has been evaluated as influenced by both formulation and process parameters with a design of experiments (DOE) study; including citrate or acetate buffer, pH, buffer concentration, presence or absence of pABA + EDTA, resin amount and sodium chloride concentration. The aim was to achieve a separation with high sorption of 223Ra and accompanying low TTC sorption. The results were analyzed by multivariate analysis. Four regression models of TTC and 223Ra sorption from citrate and acetate buffered formulations were developed. The predictive accuracy of sorption in the four statistical models was given by standard deviations and confidence intervals. The TTC sorption in citrate and acetate buffered formulations was affected by the identical variables and the variation in TTC sorption was comparable for the two models. However, the DOE variables had a significantly stronger impact on the 223Ra sorption in citrate buffered formulations than the 223Ra sorption in acetate buffer. An optimal separation with a TTC sorption below 25% and 223Ra sorption above 90% can be achieved in both citrate and acetate buffered formulations. Stability studies of radiochemical purity (RCP) indicated that the measured 227Th values may be partly due to free 227Th and not TTC, but the results indicate that TTC stability may be controlled by optimizing formulation parameters. Hence, the sorption data and the regression models presented must be reviewed and further explored with regard to what is known about the stability of the TTC in the different buffered formulations.


Assuntos
Anticorpos Monoclonais/química , Cátions/química , Rádio (Elemento)/química , Anticorpos Monoclonais/metabolismo , Soluções Tampão , Química Farmacêutica , Compostos Radiofarmacêuticos , Tório/química
4.
Bioorg Med Chem Lett ; 26(17): 4318-21, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476138

RESUMO

We present the synthesis and characterization of a highly efficient thorium chelator, derived from the octadentate hydroxypyridinone class of compounds. The chelator forms extremely stable complexes with fast formation rates in the presence of Th-227 (ambient temperature, 20min). In addition, mouse biodistribution data are provided which indicate rapid hepatobiliary excretion route of the chelator which, together with low bone uptake, supports the stability of the complex in vivo. The carboxylic acid group may be readily activated for conjugation through the ɛ-amino groups of lysine residues in biomolecules such as antibodies. This chelator is a critical component of a new class of Targeted Thorium Conjugates (TTCs) currently under development in the field of oncology.


Assuntos
Quelantes/química , Tório/química , Animais , Benzofuranos , Quelantes/síntese química , Quelantes/farmacocinética , Quelantes/farmacologia , Feminino , Coração/efeitos dos fármacos , Isótopos , Pulmão/efeitos dos fármacos , Camundongos , Estrutura Molecular , Quinolinas , Tório/farmacocinética , Tório/farmacologia
5.
Drug Dev Ind Pharm ; 42(8): 1215-24, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26569601

RESUMO

Targeted thorium conjugates are currently being investigated as a new class of alpha-radiopharmaceuticals. The natural decay of thorium-227 ((227)Th) results in the ingrowth of radium-223 ((223)Ra). Consideration must, therefore, be given to define acceptable limits of (223)Ra in the drug product at the time of dose administration. By effective sequestration of (223)Ra, we aim to improve the radiochemical purity and extend the effective user window of drug products containing (227)Th. (223)Ra is the first progeny of (227)Th and the only one with a long half-life (days). We have, therefore, focused on the removal of this specific species since the progenies of (223)Ra will have a very limited lifetime in the formulation once (223)Ra is removed. In this study, we investigated a multitude of materials for their ability to reduce the (223)Ra level by: (1) passive diffusion or (2) by cartridge filtration on gravity columns. In addition, we probe the compatibility of these materials in the presence of antibody trastuzumab to assess the level of protein binding and estimate the quenching of radiolysis by binding of radionuclides. A screening matrix of organic and inorganic materials was established, i.e. strontium and calcium alginate gel beads, distearoyl phosphatidylglycerol (DSPG) liposomes, ceramic hydroxyapatite, Zeolite UOP type 4A and cation exchange resins AG50W-X8 and SOURCE 30S. First, passive diffusional uptake of (223)Ra by suspended materials present in the formulation was measured as a decrease in sample radioactivity after separation. Second, selected materials were packed on gravity columns in order to evaluate the efficiency of column separation versus diffusional adsorption. The retention of (223)Ra and (227)Th were characterized by measuring the radioactivity in the eluate and on the columns. Finally, the compatibility between trastuzumab, as a selected model antibody, and suspensions of the binding materials was analyzed during storage of the drug product in the presence of adsorbent. The formation of H2O2 was evaluated to measure the influence of radionuclide binding material on radiolysis in the formulation. All the materials bound (223)Ra by passive diffusional uptake ranging from 31% to 95% with DSPG liposomes demonstrating superiority at 95% efficiency. All materials suitable for assessment by gravity column filtration bound (223)Ra almost quantitatively (∼100%) and with minimal variation (relative standard deviation <1%). The uptake was significantly higher compared to passive diffusional uptake. Alginate gel beads, ceramic hydroxyapatite and SOURCE 30S reduced the antibody concentration in solution to 40-50% while the Zeolite UOP type 4A, AG50W-X8 resin and DSPG liposomes showed ≤10% reduction of antibody concentration. Ceramic hydroxyapatite significantly reduced H2O2 formed by radionuclide initiated radiolysis.


Assuntos
Compostos Radiofarmacêuticos/química , Rádio (Elemento)/química , Tório/química , Alginatos/química , Anticorpos/química , Cerâmica/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Durapatita/química , Ácido Glucurônico/química , Meia-Vida , Ácidos Hexurônicos/química , Peróxido de Hidrogênio/química , Lipossomos/química , Fosfatidilgliceróis/química
6.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444529

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-30% of breast cancers but has low expression in normal tissue, making it attractive for targeted alpha therapy (TAT). HER2-positive breast cancer typically metastasizes to bone, resulting in incurable disease and significant morbidity and mortality. Therefore, new strategies for HER2-targeting therapy are needed. Here, we present the preclinical in vitro and in vivo characterization of the HER2-targeted thorium-227 conjugate (HER2-TTC) TAT in various HER2-positive cancer models. In vitro, HER2-TTC showed potent cytotoxicity in various HER2-expressing cancer cell lines and increased DNA double strand break formation and the induction of cell cycle arrest in BT-474 cells. In vivo, HER2-TTC demonstrated dose-dependent antitumor efficacy in subcutaneous xenograft models. Notably, HER2-TTC also inhibited intratibial tumor growth and tumor-induced abnormal bone formation in an intratibial BT-474 mouse model that mimics breast cancer metastasized to bone. Furthermore, a match in HER2 expression levels between primary breast tumor and matched bone metastases samples from breast cancer patients was observed. These results demonstrate proof-of-concept for TAT in the treatment of patients with HER2-positive breast cancer, including cases where the tumor has metastasized to bone.

7.
Cancer Biother Radiopharm ; 35(7): 497-510, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32255671

RESUMO

Targeted α therapy (TAT) offers the potential for the targeted delivery of potent α-particle-emitting radionuclides that emit high linear energy transfer radiation. This leads to a densely ionizing radiation track over a short path. Localized radiation induces cytotoxic, difficult-to-repair, clustered DNA double-strand breaks (DSBs). To date, radium-223 (223Ra) is the only TAT approved for the treatment of patients with metastatic castration-resistant prostate cancer. Thorium-227 (227Th), the progenitor nuclide of 223Ra, offers promise as a wider-ranging alternative due to the availability of efficient chelators, such as octadentate 3,2-hydroxypyridinone (3,2-HOPO). The 3,2-HOPO chelator can be readily conjugated to a range of targeting moieties, enabling the generation of new targeted thorium-227 conjugates (TTCs). This review provides a comprehensive overview of the advances in the preclinical development of TTCs for hematological cancers, including CD22-positive B cell cancers and CD33-positive leukemia, as well as for solid tumors overexpressing renal cell cancer antigen CD70, membrane-anchored glycoprotein mesothelin in mesothelioma, prostate-specific membrane antigen in prostate cancer, and fibroblast growth factor receptor 2. As the mechanism of action for TTCs is linked to the formation of DSBs, the authors also report data supporting combinations of TTCs with inhibitors of the DNA damage response pathways, including those of the ataxia telangiectasia and Rad3-related protein, and poly-ADP ribose polymerase. Finally, emerging evidence suggests that TTCs induce immunogenic cell death through the release of danger-associated molecular patterns. Based on encouraging preclinical data, clinical studies have been initiated to investigate the safety and tolerability of TTCs in patients with various cancers.


Assuntos
Partículas alfa/uso terapêutico , Neoplasias Hematológicas/radioterapia , Imunoconjugados/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Tório/uso terapêutico , Alarminas/metabolismo , Quelantes/química , Dano ao DNA/efeitos da radiação , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Imunoconjugados/química , Morte Celular Imunogênica/efeitos da radiação , Medicina de Precisão/métodos , Piridonas/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Tório/química , Tório/farmacologia , Resultado do Tratamento
8.
Clin Cancer Res ; 26(8): 1985-1996, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831560

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) is an attractive target for radionuclide therapy of metastatic castration-resistant prostate cancer (mCRPC). PSMA-targeted alpha therapy (TAT) has shown early signs of activity in patients with prostate cancer refractory to beta radiation. We describe a novel, antibody-based TAT, the PSMA-targeted thorium-227 conjugate PSMA-TTC (BAY 2315497) consisting of the alpha-particle emitter thorium-227 complexed by a 3,2-HOPO chelator covalently linked to a fully human PSMA-targeting antibody. EXPERIMENTAL DESIGN: PSMA-TTC was characterized for affinity, mode of action, and cytotoxic activity in vitro. Biodistribution, pharmacokinetics, and antitumor efficacy were investigated in vivo using cell line and patient-derived xenograft (PDX) models of prostate cancer. RESULTS: PSMA-TTC was selectively internalized into PSMA-positive cells and potently induced DNA damage, cell-cycle arrest, and apoptosis in vitro. Decrease in cell viability was observed dependent on the cellular PSMA expression levels. In vivo, PSMA-TTC showed strong antitumor efficacy with T/C values of 0.01 to 0.31 after a single injection at 300 to 500 kBq/kg in subcutaneous cell line and PDX models, including models resistant to standard-of-care drugs such as enzalutamide. Furthermore, inhibition of both cancer and cancer-induced abnormal bone growth was observed in a model mimicking prostate cancer metastasized to bone. Specific tumor uptake and efficacy were demonstrated using various PSMA-TTC doses and dosing schedules. Induction of DNA double-strand breaks was identified as a key mode of action for PSMA-TTC both in vitro and in vivo. CONCLUSIONS: The strong preclinical antitumor activity of PSMA-TTC supports its clinical evaluation, and a phase I trial is ongoing in mCRPC patients (NCT03724747).


Assuntos
Partículas alfa/uso terapêutico , Antígenos de Superfície/metabolismo , Antineoplásicos Imunológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glutamato Carboxipeptidase II/metabolismo , Imunoconjugados/farmacocinética , Neoplasias da Próstata/radioterapia , Tório/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618864

RESUMO

Targeted thorium-227 conjugates (TTCs) represent a novel class of therapeutic radiopharmaceuticals for the treatment of cancer. TTCs consist of the alpha particle emitter thorium-227 complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the alpha particles induce potent and selective anti-tumor activity driven by the induction of DNA damage in the target cell. Methods: The efficacy of human epidermal growth factor receptor 2 (HER2)-TTC was tested in combination in vitro and in vivo with the poly ADP ribose polymerase (PARP) inhibitor (PARPi), olaparib, in the human colorectal adenocarcinoma isogenic cell line pair DLD-1 and the knockout variant DLD-1 BRCA2 -/- Results: The in vitro combination effects were determined to be synergistic in DLD-1 BRCA2 -/- and additive in DLD-1 parental cell lines. Similarly, the in vivo efficacy of the combination was determined to be synergistic only in the DLD-1 BRCA2 -/- xenograft model, with statistically significant tumor growth inhibition at a single TTC dose of 120 kBq/kg body weight (bw) and 50 mg/kg bw olaparib (daily, i.p. for 4 weeks), demonstrating comparable tumor growth inhibition to a single TTC dose of 600 kBq/kg bw. Conclusions: This study supports the further investigation of DNA damage response inhibitors in combination with TTCs as a new strategy for the effective treatment of mutation-associated cancers.

10.
J Nucl Med ; 60(9): 1293-1300, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30850485

RESUMO

Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix "i") when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.


Assuntos
Dano ao DNA/efeitos dos fármacos , Proteínas Ligadas por GPI/farmacologia , Neoplasias Ovarianas/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacologia , Tório/farmacologia , Partículas alfa , Animais , Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Quelantes/farmacologia , Reparo do DNA , Feminino , Xenoenxertos , Humanos , Mesotelina , Camundongos , Camundongos Nus , Transplante de Neoplasias , Piridonas/farmacologia , Distribuição Tecidual
11.
Int J Radiat Oncol Biol Phys ; 105(2): 410-422, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31255687

RESUMO

PURPOSE: Fibroblast growth factor receptor 2 (FGFR2) has been previously reported to be overexpressed in several types of cancer, whereas the expression in normal tissue is considered to be moderate to low. Thus, FGFR2 is regarded as an attractive tumor antigen for targeted alpha therapy. This study reports the evaluation of an FGFR2-targeted thorium-227 conjugate (FGFR2-TTC, BAY 2304058) comprising an anti-FGFR2 antibody, a chelator moiety covalently conjugated to the antibody, and the alpha particle-emitting radionuclide thorium-227. FGFR2-TTC was assessed as a monotherapy and in combination with the DNA damage response inhibitor ATRi BAY 1895344. METHODS AND MATERIALS: The in vitro cytotoxicity and mechanism of action were evaluated by determining cell viability, the DNA damage response marker γH2A.X, and cell cycle analyses. The in vivo efficacy was determined using human tumor xenograft models in nude mice. RESULTS: In vitro mechanistic assays demonstrated upregulation of γH2A.X and induction of cell cycle arrest in several FGFR2-expressing cancer cell lines after treatment with FGFR2-TTC. In vivo, FGFR2-TTC significantly inhibited tumor growth at a dose of 500 kBq/kg in the xenograft models NCI-H716, SNU-16, and MFM-223. By combining FGFR2-TTC with the ATR inhibitor BAY 1895344, an increased potency was observed in vitro, as were elevated levels of γH2A.X and inhibition of FGFR2-TTC-mediated cell cycle arrest. In the MFM-223 tumor xenograft model, combination of the ATRi BAY 1895344 with FGFR2-TTC resulted in significant tumor growth inhibition at doses at which the single agents had no effect. CONCLUSIONS: The data provide a mechanism-based rationale for combining the FGFR2-TTC with the ATRi BAY 1895344 as a new therapeutic approach for treatment of FGFR2-positive tumors from different cancer indications.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Neoplasias da Mama/radioterapia , Inibidores de Proteínas Quinases/uso terapêutico , Radioimunoterapia/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/uso terapêutico , Tório/uso terapêutico , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/uso terapêutico , Dano ao DNA , Combinação de Medicamentos , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Histonas/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Tório/farmacocinética , Compostos de Tório/uso terapêutico , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 25(15): 4723-4734, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064781

RESUMO

PURPOSE: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue. We present herein the preclinical evaluation of a mesothelin (MSLN)-targeted thorium-227 conjugate, BAY 2287411. MSLN is a GPI-anchored membrane glycoprotein overexpressed in mesothelioma, ovarian, pancreatic, lung, and breast cancers with limited expression in healthy tissue. EXPERIMENTAL DESIGN: The binding activity and radiostability of BAY 2287411 were confirmed bioanalytically. The mode-of-action and antitumor potency of BAY 2287411 were investigated in vitro and in vivo in cell line and patient-derived xenograft models of breast, colorectal, lung, ovarian, and pancreatic cancer. RESULTS: BAY 2287411 induced DSBs, apoptotic markers, and oxidative stress, leading to reduced cellular viability. Furthermore, upregulation of immunogenic cell death markers was observed. BAY 2287411 was well-tolerated and demonstrated significant antitumor efficacy when administered via single or multiple dosing regimens in vivo. In addition, significant survival benefit was observed in a disseminated lung cancer model. Biodistribution studies showed specific uptake and retention of BAY 2287411 in tumors and enabled the development of a mechanistic pharmacokinetic/pharmacodynamic model to describe the preclinical data. CONCLUSIONS: These promising preclinical results supported the transition of BAY 2287411 into a clinical phase I program in mesothelioma and ovarian cancer patients (NCT03507452).


Assuntos
Partículas alfa/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/farmacologia , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacologia , Tório/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/farmacocinética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelina , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/farmacocinética , Tório/administração & dosagem , Tório/química , Tório/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer Ther ; 15(10): 2422-2431, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27535972

RESUMO

The clinical efficacy of the first approved alpha pharmaceutical, Xofigo (radium-223 dichloride, 223RaCl2), has stimulated significant interest in the development of new alpha-particle emitting drugs in oncology. Unlike radium-223 (223Ra), the parent radionuclide thorium-227 (227Th) is able to form highly stable chelator complexes and is therefore amenable to targeted radioimmunotherapy. We describe the preparation and use of a CD33-targeted thorium-227 conjugate (CD33-TTC), which binds to the sialic acid receptor CD33 for the treatment of acute myeloid leukemia (AML). A chelator was conjugated to the CD33-targeting antibody lintuzumab via amide bonds, enabling radiolabeling with the alpha-emitter 227Th. The CD33-TTC induced in vitro cytotoxicity on CD33-positive cells, independent of multiple drug resistance (MDR) phenotype. After exposure to CD33-TTC, cells accumulated DNA double-strand breaks and were arrested in the G2 phase of the cell cycle. In vivo, the CD33-TTC demonstrated antitumor activity in a subcutaneous xenograft mouse model using HL-60 cells at a single dose regimen. Dose-dependent significant survival benefit was further demonstrated in a disseminated mouse tumor model after single dose injection or administered as a fractionated dose. The data presented support the further development of the CD33-TTC as a novel alpha pharmaceutical for the treatment of AML. Mol Cancer Ther; 15(10); 2422-31. ©2016 AACR.


Assuntos
Anticorpos Monoclonais , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Leucemia Mieloide Aguda/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Tório , Animais , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoconjugados/química , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Camundongos , Radioimunoterapia , Análise de Sobrevida , Tório/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA