Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
2.
Plant Cell ; 35(5): 1360-1385, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808541

RESUMO

The rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus. Our analysis revealed major temporal changes in fungal gene expression during plant infection. Pathogen gene expression could be classified into 10 modules of temporally co-expressed genes, providing evidence for the induction of pronounced shifts in primary and secondary metabolism, cell signaling, and transcriptional regulation. A set of 863 genes encoding secreted proteins are differentially expressed at specific stages of infection, and 546 genes named MEP (Magnaportheeffector protein) genes were predicted to encode effectors. Computational prediction of structurally related MEPs, including the MAX effector family, revealed their temporal co-regulation in the same co-expression modules. We characterized 32 MEP genes and demonstrate that Mep effectors are predominantly targeted to the cytoplasm of rice cells via the biotrophic interfacial complex and use a common unconventional secretory pathway. Taken together, our study reveals major changes in gene expression associated with blast disease and identifies a diverse repertoire of effectors critical for successful infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiologia , Ascomicetos/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040332

RESUMO

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Assuntos
Pandemias , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Genômica , Fungos
4.
Proc Natl Acad Sci U S A ; 120(12): e2301358120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913579

RESUMO

To cause rice blast disease, the filamentous fungus Magnaporthe oryzae secretes a battery of effector proteins into host plant tissue to facilitate infection. Effector-encoding genes are expressed only during plant infection and show very low expression during other developmental stages. How effector gene expression is regulated in such a precise manner during invasive growth by M. oryzae is not known. Here, we report a forward-genetic screen to identify regulators of effector gene expression, based on the selection of mutants that show constitutive effector gene expression. Using this simple screen, we identify Rgs1, a regulator of G-protein signaling (RGS) protein that is necessary for appressorium development, as a novel transcriptional regulator of effector gene expression, which acts prior to plant infection. We show that an N-terminal domain of Rgs1, possessing transactivation activity, is required for effector gene regulation and acts in an RGS-independent manner. Rgs1 controls the expression of at least 60 temporally coregulated effector genes, preventing their transcription during the prepenetration stage of development prior to plant infection. A regulator of appressorium morphogenesis is therefore also required for the orchestration of pathogen gene expression required for invasive growth by M. oryzae during plant infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Ascomicetos/genética , Transdução de Sinais , Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Oryza/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Nature ; 574(7778): 423-427, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597961

RESUMO

The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle1,2. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha3. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine-aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease.


Assuntos
Ascomicetos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/metabolismo , Hifas , NADPH Oxidases/metabolismo , Oryza/fisiologia
6.
J Cell Sci ; 135(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35856284

RESUMO

Many plant pathogenic fungi have the capacity to infect their plant hosts using specialised cells called appressoria. These structures act as a gateway between the fungus and host, allowing entry to internal tissues. Appressoria apply enormous physical force to rupture the plant surface, or use a battery of enzymes to digest the cuticle and plant cell wall. Appressoria also facilitate focal secretion of effectors at the point of plant infection to suppress plant immunity. These infection cells develop in response to the physical characteristics of the leaf surface, starvation stress and signals from the plant. Appressorium morphogenesis has been linked to septin-mediated reorganisation of F-actin and microtubule networks of the cytoskeleton, and remodelling of the fungal cell wall. In this Cell Science at a Glance and accompanying poster, we highlight recent advances in our understanding of the mechanisms of appressorium-mediated infection, and compare development on the leaf surface to the biology of invasive growth by pathogenic fungi. Finally, we outline key gaps in our current knowledge of appressorium cell biology.


Assuntos
Oryza , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Morfogênese , Oryza/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Septinas/metabolismo
7.
Fungal Genet Biol ; 154: 103562, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33882359

RESUMO

Magnaporthe oryzae is the causal agent of rice blast disease, the most widespread and serious disease of cultivated rice. Live cell imaging and quantitative 4D image analysis have provided new insight into the mechanisms by which the fungus infects host cells and spreads rapidly in plant tissue. In this video review article, we apply live cell imaging approaches to understanding the cell and developmental biology of rice blast disease. To gain entry to host plants, M. oryzae develops a specialised infection structure called an appressorium, a unicellular dome-shaped cell which generates enormous turgor, translated into mechanical force to rupture the leaf cuticle. Appressorium development is induced by perception of the hydrophobic leaf surface and nutrient deprivation. Cargo-independent autophagy in the three-celled conidium, controlled by cell cycle regulation, is essential for appressorium morphogenesis. Appressorium maturation involves turgor generation and melanin pigment deposition in the appressorial cell wall. Once a threshold of turgor has been reached, this triggers re-polarisation which requires regulated generation of reactive oxygen species, to facilitate septin GTPase-dependent cytoskeletal re-organisation and re-polarisation of the appressorium to form a narrow, rigid penetration peg. Infection of host tissue requires a further morphogenetic transition to a pseudohyphal-type of growth within colonised rice cells. At the same time the fungus secretes an arsenal of effector proteins to suppress plant immunity. Many effectors are secreted into host cells directly, which involves a specific secretory pathway and a specialised structure called the biotrophic interfacial complex. Cell-to-cell spread of the fungus then requires development of a specialised structure, the transpressorium, that is used to traverse pit field sites, allowing the fungus to maintain host cell membrane integrity as new living plant cells are invaded. Thereafter, the fungus rapidly moves through plant tissue and host cells begin to die, as the fungus switches to necrotrophic growth and disease symptoms develop. These morphogenetic transitions are reviewed in the context of live cell imaging studies.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/crescimento & desenvolvimento , Micoses/microbiologia , Oryza/microbiologia , Células Vegetais/imunologia , Doenças das Plantas/microbiologia , Parede Celular/metabolismo
8.
Environ Microbiol ; 22(7): 2581-2595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32064718

RESUMO

Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and ß-1,3-glucans to the host immune system. Exposure of the chitin and ß-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.


Assuntos
Ascomicetos/patogenicidade , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Oryza/microbiologia , Fosfotransferases/metabolismo , Ascomicetos/genética , Parede Celular/microbiologia , Quitina/metabolismo , Proteínas Fúngicas/genética , Glucanos/metabolismo , Ácido Fluorídrico/farmacologia , Hifas/metabolismo , Fosfotransferases/genética , Doenças das Plantas/microbiologia , Virulência
9.
PLoS Pathog ; 13(7): e1006516, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742127

RESUMO

The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Polaridade Celular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Ligação Proteica , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Virulência
10.
Phytopathology ; 109(4): 504-508, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30253117

RESUMO

The blast fungus Magnaporthe oryzae is comprised of lineages that exhibit varying degrees of specificity on about 50 grass hosts, including rice, wheat, and barley. Reliable diagnostic tools are essential given that the pathogen has a propensity to jump to new hosts and spread to new geographic regions. Of particular concern is wheat blast, which has suddenly appeared in Bangladesh in 2016 before spreading to neighboring India. In these Asian countries, wheat blast strains are now co-occurring with the destructive rice blast pathogen raising the possibility of genetic exchange between these destructive pathogens. We assessed the recently described MoT3 diagnostic assay and found that it did not distinguish between wheat and rice blast isolates from Bangladesh. The assay is based on primers matching the WB12 sequence corresponding to a fragment of the M. oryzae MGG_02337 gene annotated as a short chain dehydrogenase. These primers could not reliably distinguish between wheat and rice blast isolates from Bangladesh based on DNA amplification experiments performed in separate laboratories in Bangladesh and in the United Kingdom. Specifically, all eight rice blast isolates tested in this study produced the WB12 amplicon. In addition, comparative genomics of the WB12 nucleotide sequence revealed a complex underlying genetic structure with related sequences across M. oryzae strains and in both rice and wheat blast isolates. We, therefore, caution against the indiscriminate use of this assay to identify wheat blast and encourage further development of the assay to ensure its value in diagnosis.


Assuntos
Magnaporthe , Técnicas de Diagnóstico Molecular , Oryza , Doenças das Plantas , Ásia , Bangladesh , Genótipo , Índia , Magnaporthe/classificação , Magnaporthe/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae , Triticum , Reino Unido
12.
Plant Cell ; 27(11): 3277-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566920

RESUMO

Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Septinas/metabolismo , Hifas/metabolismo , Imunoprecipitação , Subunidades Proteicas/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/metabolismo , Frações Subcelulares/metabolismo
13.
Environ Microbiol ; 19(3): 1008-1016, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165657

RESUMO

The rice blast fungus Magnaporthe oryzae elaborates a specialized cell called an appressorium, which is used to breach the tough outer cuticle of a rice leaf, enabling the fungus entry to host plant cells. The appressorium generates enormous turgor by accumulating glycerol to very high concentrations within the cell. Glycerol accumulation and melanization of the appressorium cell wall collectively drive turgor-mediated penetration of the rice leaf. In this review, we discuss the potential metabolic sources of glycerol in the rice blast fungus and how appressorium turgor is focused as physical force at the base of the infection cell, leading to the formation of a rigid penetration peg. We review recent studies of M. oryzae and other relevant appressorium-forming fungi which shed light on how glycerol is synthesized and how appressorium turgor is regulated. Finally, we provide some questions to guide avenues of future research that will be important in fully understanding the role of glycerol in rice blast disease.


Assuntos
Glicerol/metabolismo , Magnaporthe/metabolismo , Oryza/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo
14.
Fungal Genet Biol ; 90: 61-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26703899

RESUMO

The rice blast fungus, Magnaporthe oryzae, is responsible for the most serious disease of rice and is a continuing threat to ensuring global food security. The fungus has also, however, emerged as a model experimental organism for understanding plant infection processes by pathogenic fungi. This is largely due to its amenability to both classical and molecular genetics, coupled with the efforts of a very large international research community. This review, which is based on a plenary presentation at the 28th Fungal Genetics Conference in Asilomar, California in March 2015, describes recent progress in understanding how M. oryzae uses specialised cell called appressoria to bring about plant infection and the underlying biology of this developmental process. We also review how the fungus is then able to proliferate within rice tissue, deploying effector proteins to facilitate its spread by suppressing plant immunity and promoting growth and development of the fungus.


Assuntos
Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal
15.
Proc Natl Acad Sci U S A ; 110(8): 3179-84, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382235

RESUMO

The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics.


Assuntos
Citoesqueleto , Magnaporthe/patogenicidade , NADPH Oxidases/metabolismo , Oryza/microbiologia , Septinas/fisiologia , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo
16.
Environ Microbiol ; 17(4): 1023-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24684242

RESUMO

The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas Fúngicas/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Scedosporium/imunologia , Scedosporium/patogenicidade , Sequência de Bases , Infecções do Sistema Nervoso Central/microbiologia , Infecções do Sistema Nervoso Central/patologia , DNA Intergênico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Pulmão/microbiologia , Pulmão/patologia , Melaninas/biossíntese , Afogamento Iminente/microbiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Scedosporium/enzimologia , Análise de Sequência de DNA , Microbiologia do Solo
17.
Plant Cell ; 24(1): 322-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22267486

RESUMO

Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.


Assuntos
Quitina/imunologia , Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Dados de Sequência Molecular , Oryza/metabolismo , Proteínas de Plantas/genética
18.
Nat Microbiol ; 8(8): 1508-1519, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474734

RESUMO

The rice blast fungus Magnaporthe oryzae uses a pressurized infection cell called an appressorium to drive a rigid penetration peg through the leaf cuticle. The vast internal pressure of an appressorium is very challenging to investigate, leaving our understanding of the cellular mechanics of plant infection incomplete. Here, using fluorescence lifetime imaging of a membrane-targeting molecular mechanoprobe, we quantify changes in membrane tension in M. oryzae. We show that extreme pressure in the appressorium leads to large-scale spatial heterogeneities in membrane mechanics, much greater than those observed in any cell type previously. By contrast, non-pathogenic melanin-deficient mutants, exhibit low spatially homogeneous membrane tension. The sensor kinase ∆sln1 mutant displays significantly higher membrane tension during inflation of the appressorium, providing evidence that Sln1 controls turgor throughout plant infection. This non-invasive, live cell imaging technique therefore provides new insight into the enormous invasive forces deployed by pathogenic fungi to invade their hosts, offering the potential for new disease intervention strategies.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
19.
Microbiology (Reading) ; 158(Pt 1): 84-97, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21835878

RESUMO

Trichoderma species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of Trichoderma hamatum, but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an N-acetyl-ß-d-glucosaminidase-deficient mutant of T. hamatum, generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with Rhizoctonia solani in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen Sclerotinia sclerotiorum is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in T. hamatum-mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified Trichoderma strains for use as crop stimulants and biocontrol agents in plant agriculture.


Assuntos
Acetilglucosaminidase/genética , Antibiose , Proteínas Fúngicas/genética , Lactuca/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Trichoderma/fisiologia , Acetilglucosaminidase/metabolismo , Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Engenharia Genética , Lactuca/crescimento & desenvolvimento , Dados de Sequência Molecular , Controle Biológico de Vetores , Rhizoctonia/fisiologia , Microbiologia do Solo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento
20.
Methods Mol Biol ; 2356: 19-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236674

RESUMO

This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.


Assuntos
Ascomicetos , Oryza , Biologia , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Septinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA