RESUMO
Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (â¼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.
Assuntos
Evolução Molecular , Genoma , Perissodáctilos/genética , Animais , Demografia , Fluxo Gênico , Variação Genética , Geografia , Heterozigoto , Homozigoto , Especificidade de Hospedeiro , Cadeias de Markov , Mutação/genética , Filogenia , Especificidade da Espécie , Fatores de TempoRESUMO
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Assuntos
Animais Selvagens , Biodiversidade , Conservação dos Recursos Naturais , Pesquisa com Células-Tronco , Animais , Conservação dos Recursos Naturais/métodos , Células-Tronco/citologiaRESUMO
Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.
Assuntos
Evolução Biológica , Genoma , Ornitorrinco/genética , Tachyglossidae/genética , Animais , Feminino , Masculino , Mamíferos/genética , Filogenia , Cromossomos Sexuais/genéticaRESUMO
Genomic studies of endangered species have primarily focused on describing diversity patterns and resolving phylogenetic relationships, with the overarching goal of informing conservation efforts. However, few studies have investigated genomic diversity housed in captive populations. For tigers (Panthera tigris), captive individuals vastly outnumber those in the wild, but their diversity remains largely unexplored. Privately owned captive tiger populations have remained an enigma in the conservation community, with some believing that these individuals are severely inbred, while others believe they may be a source of now-extinct diversity. Here, we present a large-scale genetic study of the private (non-zoo) captive tiger population in the United States, also known as "Generic" tigers. We find that the Generic tiger population has an admixture fingerprint comprising all six extant wild tiger subspecies. Of the 138 Generic individuals sequenced for the purpose of this study, no individual had ancestry from only one subspecies. We show that the Generic tiger population has a comparable amount of genetic diversity relative to most wild subspecies, few private variants, and fewer deleterious mutations. We observe inbreeding coefficients similar to wild populations, although there are some individuals within both the Generic and wild populations that are substantially inbred. Additionally, we develop a reference panel for tigers that can be used with imputation to accurately distinguish individuals and assign ancestry with ultralow coverage (0.25×) data. By providing a cost-effective alternative to whole-genome sequencing (WGS), the reference panel provides a resource to assist in tiger conservation efforts for both ex- and in situ populations.
Assuntos
Espécies em Perigo de Extinção , Variação Genética , Tigres , Tigres/genética , Tigres/classificação , Animais , Estados Unidos , Filogenia , Conservação dos Recursos Naturais , Genômica/métodos , Genoma/genética , Animais de Zoológico/genéticaRESUMO
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Assuntos
Aves/classificação , Aves/genética , Genoma/genética , Genômica/métodos , Genômica/normas , Filogenia , Animais , Galinhas/genética , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Tentilhões/genética , Humanos , Seleção Genética/genética , Sintenia/genéticaRESUMO
Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of â¼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Assuntos
Biodiversidade , Evolução Biológica , Genômica/métodos , Animais , Evolução Molecular , Variação Genética/genética , Genoma/genética , Genômica/tendências , Humanos , FilogeniaRESUMO
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , FilogeniaRESUMO
Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for â¼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.
Assuntos
Evolução Molecular , Cariótipo , Mamíferos , Sintenia , Animais , Bovinos/genética , Cromossomos de Mamíferos/genética , Eutérios/genética , Humanos , Mamíferos/genética , Filogenia , Bichos-Preguiça/genética , Sintenia/genéticaRESUMO
The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.
Assuntos
Espécies em Perigo de Extinção , Furões , Animais , Masculino , Furões/genética , Cariótipo , Cariotipagem , FertilidadeRESUMO
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Pneumonia Viral/metabolismo , Aminoácidos , Animais , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética , Especificidade de Hospedeiro , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , VertebradosRESUMO
Although cryobanking represents a powerful conservation tool, a lack of standardized information on the species represented in global cryobanks, and inconsistent prioritization of species for future sampling, hinder the conservation potential of cryobanking, resulting in missed conservation opportunities. We analyze the representation of amphibian, bird, mammal, and reptile species within the San Diego Zoo Wildlife Alliance Frozen Zoo® living cell collection (as of April 2019) and implement a qualitative framework for the prioritization of species for future sampling. We use global conservation assessment schemes (including the International Union for Conservation of Nature (IUCN) Red List of Threatened Species™, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), the Alliance for Zero Extinction, the EDGE of Existence, and Climate Change Vulnerability), and opportunities for sample acquisition from the global zoo and aquarium community, to identify priority species for cryobanking. We show that 965 species, including 5% of all IUCN Red List "Threatened" amphibians, birds, mammals, and reptiles, were represented in the collection and that sampling from within existing zoo and aquarium collections could increase representation to 16.6% (by sampling an additional 707 "Threatened" species). High-priority species for future cryobanking efforts include the whooping crane (Grus americana), crested ibis (Nipponia nippon), and Siberian crane (Leucogeranus leucogeranus). Each of these species are listed under every conservation assessment scheme and have ex situ populations available for sampling. We also provide species prioritizations based on subsets of these assessment schemes together with sampling opportunities from the global zoo and aquarium community. We highlight the difficulties in obtaining in situ samples, and encourage the formation of a global cryobanking database together with the establishment of new cryobanks in biodiversity-rich regions.
Assuntos
Comércio , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Animais de Zoológico , Internacionalidade , Espécies em Perigo de Extinção , Biodiversidade , Anfíbios , Répteis , Aves , MamíferosRESUMO
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Assuntos
Evolução Biológica , Tamanho Corporal/genética , Genoma , Roedores/genética , Animais , Feminino , Crescimento/genética , Família Multigênica , Neoplasias/genética , Roedores/crescimento & desenvolvimentoRESUMO
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world's wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.
Assuntos
Evolução Biológica , Deriva Genética , Endogamia , Seleção Genética , Tigres/genética , Animais , Conservação dos Recursos Naturais , Variação Genética , Genoma , Índia , FilogeografiaRESUMO
The role of chromosome rearrangements in driving evolution has been a long-standing question of evolutionary biology. Here we focused on ruminants as a model to assess how rearrangements may have contributed to the evolution of gene regulation. Using reconstructed ancestral karyotypes of Cetartiodactyls, Ruminants, Pecorans, and Bovids, we traced patterns of gross chromosome changes. We found that the lineage leading to the ruminant ancestor after the split from other cetartiodactyls was characterized by mostly intrachromosomal changes, whereas the lineage leading to the pecoran ancestor (including all livestock ruminants) included multiple interchromosomal changes. We observed that the liver cell putative enhancers in the ruminant evolutionary breakpoint regions are highly enriched for DNA sequences under selective constraint acting on lineage-specific transposable elements (TEs) and a set of 25 specific transcription factor (TF) binding motifs associated with recently active TEs. Coupled with gene expression data, we found that genes near ruminant breakpoint regions exhibit more divergent expression profiles among species, particularly in cattle, which is consistent with the phylogenetic origin of these breakpoint regions. This divergence was significantly greater in genes with enhancers that contain at least one of the 25 specific TF binding motifs and located near bovidae-to-cattle lineage breakpoint regions. Taken together, by combining ancestral karyotype reconstructions with analysis of cis regulatory element and gene expression evolution, our work demonstrated that lineage-specific regulatory elements colocalized with gross chromosome rearrangements may have provided valuable functional modifications that helped to shape ruminant evolution.
Assuntos
Pontos de Quebra do Cromossomo , Evolução Molecular , Ruminantes/genética , Sintenia , Animais , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Cariótipo , Ligação Proteica , Seleção Genética , Fatores de Transcrição/metabolismoRESUMO
Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.
Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Extinção Biológica , Vertebrados/fisiologia , AnimaisRESUMO
Africa's black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros are closely related sister-taxa that evolved highly divergent obligate browsing and grazing feeding strategies. Although their precursor species Diceros praecox and Ceratotherium mauritanicum appear in the fossil record â¼5.2 Ma, by 4 Ma both were still mixed feeders, and were even spatiotemporally sympatric at several Pliocene sites in what is today Africa's Rift Valley. Here, we ask whether or not D. praecox and C. mauritanicum were reproductively isolated when they came into Pliocene secondary contact. We sequenced and de novo assembled the first annotated black rhinoceros reference genome and compared it with available genomes of other black and white rhinoceros. We show that ancestral gene flow between D. praecox and C. mauritanicum ceased sometime between 3.3 and 4.1 Ma, despite conventional methods for the detection of gene flow from whole genome data returning false positive signatures of recent interspecific migration due to incomplete lineage sorting. We propose that ongoing Pliocene genetic exchange, for up to 2 My after initial divergence, could have potentially hindered the development of obligate feeding strategies until both species were fully reproductively isolated, but that the more severe and shifting paleoclimate of the early Pleistocene was likely the ultimate driver of ecological specialization in African rhinoceros.
Assuntos
Fluxo Gênico , Perissodáctilos/genética , Isolamento Reprodutivo , Animais , Comportamento Alimentar , Feminino , Genoma , Masculino , Taxa de MutaçãoRESUMO
The critically endangered northern white rhinoceros is believed to be extinct in the wild, with the recent death of the last male leaving only two remaining individuals in captivity. Its extinction would appear inevitable, but the development of advanced cell and reproductive technologies such as cloning by nuclear transfer and the artificial production of gametes via stem cells differentiation offer a second chance for its survival. In this work, we analyzed genome-wide levels of genetic diversity, inbreeding, population history, and demography of the white rhinoceros sequenced from cryopreserved somatic cells, with the goal of informing how genetically valuable individuals could be used in future efforts toward the genetic rescue of the northern white rhinoceros. We present the first sequenced genomes of the northern white rhinoceros, which show relatively high levels of heterozygosity and an average genetic divergence of 0.1% compared with the southern subspecies. The two white rhinoceros subspecies appear to be closely related, with low genetic admixture and a divergent time <80,000 yr ago. Inbreeding, as measured by runs of homozygosity, appears slightly higher in the southern than the northern white rhinoceros. This work demonstrates the value of the northern white rhinoceros cryopreserved genetic material as a potential gene pool for saving this subspecies from extinction.
Assuntos
Conservação dos Recursos Naturais , Variação Genética/genética , Perissodáctilos/genética , Animais , Criopreservação/métodos , Endogamia , Especificidade da EspécieRESUMO
Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.
Assuntos
Efeitos Antropogênicos , Perissodáctilos , Animais , Genômica , Endogamia , Perissodáctilos/genéticaRESUMO
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.