Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768342

RESUMO

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Assuntos
Idioma , Doença de Parkinson , Fala , Núcleo Subtalâmico , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiopatologia , Núcleo Subtalâmico/efeitos dos fármacos , Masculino , Fala/fisiologia , Fala/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética , Dopamina/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Cognição/efeitos dos fármacos , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico
2.
Neuroimage ; 285: 120470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016527

RESUMO

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Humanos , Criança , Concussão Encefálica/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética
3.
Hum Brain Mapp ; 45(1): e26544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041476

RESUMO

Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.


Assuntos
Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Biomarcadores/metabolismo , Substância Negra/metabolismo
4.
Hum Brain Mapp ; 45(7): e26699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726907

RESUMO

With the steadily increasing abundance of longitudinal neuroimaging studies with large sample sizes and multiple repeated measures, questions arise regarding the appropriate modeling of variance and covariance. The current study examined the influence of standard classes of variance-covariance structures in linear mixed effects (LME) modeling of fMRI data from patients with pediatric mild traumatic brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits, participants performed a cognitive control fMRI paradigm that compared congruent and incongruent stimuli. The hemodynamic response function was parsed into peak and late peak phases. Data were analyzed with a 4-way (GROUP×VISIT×CONGRUENCY×PHASE) LME using AFNI's 3dLME and compound symmetry (CS), autoregressive process of order 1 (AR1), and unstructured (UN) variance-covariance matrices. Voxel-wise results dramatically varied both within the cognitive control network (UN>CS for CONGRUENCY effect) and broader brain regions (CS>UN for GROUP:VISIT) depending on the variance-covariance matrix that was selected. Additional testing indicated that both model fit and estimated standard error were superior for the UN matrix, likely as a result of the modeling of individual terms. In summary, current findings suggest that the interpretation of results from complex designs is highly dependent on the selection of the variance-covariance structure using LME modeling.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adolescente , Criança , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Modelos Lineares , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Função Executiva/fisiologia
5.
Ann Neurol ; 93(4): 702-714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511519

RESUMO

OBJECTIVE: This study was undertaken to study pareidolias, or perceived meaningful objects in a meaningless stimulus, in patients across the Lewy body (LB) disease spectrum, where most do not report hallucinations or delusions. METHODS: We studied illusory responses on the Noise Pareidolia Task in 300 participants (38 cognitively impaired LB, 65 cognitively unimpaired LB, 51 Alzheimer disease spectrum [AD-s], 146 controls). Pairwise between-group comparisons examined how diagnosis impacts the number of illusory responses. Ordinal regression analysis compared the number of illusory responses across diagnosis groups, adjusting for age, sex, and education. Analyses were repeated after removing participants with reported hallucinations or delusions. RESULTS: Cognitively impaired LB participants were 12.3, 4.9, and 4.6 times more likely than control, cognitively unimpaired LB, and AD-s participants, respectively, to endorse illusory responses. After adjusting for age, sex, and education, the probability of endorsing 1 or more illusory responses was 61% in the cognitively impaired LB group, compared to 26% in AD-s, 25% in cognitively unimpaired LB, and 12% in control participants. All results were similar after repeated analysis only in participants without hallucinations or delusions. In LB without hallucinations or delusions, 52% with mild cognitive impairment and 66.7% with dementia endorsed at least 1 illusory response. INTERPRETATION: We found illusory responses are common in cognitively impaired LB patients, including those without any reported psychosis. Our data suggest that, prior to the onset of hallucinations and delusions, the Noise Pareidolia Task can easily be used to screen for unobtrusive pareidolias in all LB patients. ANN NEUROL 2023;93:702-714.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ilusões , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/psicologia , Doença de Alzheimer/psicologia , Alucinações
6.
Acta Neuropathol ; 147(1): 52, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467937

RESUMO

Parkinson's disease (PD) starts at the molecular and cellular level long before motor symptoms appear, yet there are no early-stage molecular biomarkers for diagnosis, prognosis prediction, or monitoring therapeutic response. This lack of biomarkers greatly impedes patient care and translational research-L-DOPA remains the standard of care more than 50 years after its introduction. Here, we performed a large-scale, multi-tissue, and multi-platform proteomics study to identify new biomarkers for early diagnosis and disease monitoring in PD. We analyzed 4877 cerebrospinal fluid, blood plasma, and urine samples from participants across seven cohorts using three orthogonal proteomics methods: Olink proximity extension assay, SomaScan aptamer precipitation assay, and liquid chromatography-mass spectrometry proteomics. We discovered that hundreds of proteins were upregulated in the CSF, blood, or urine of PD patients, prodromal PD patients with DAT deficit and REM sleep behavior disorder or anosmia, and non-manifesting genetic carriers of LRRK2 and GBA mutations. We nominate multiple novel hits across our analyses as promising markers of early PD, including DOPA decarboxylase (DDC), also known as L-aromatic acid decarboxylase (AADC), sulfatase-modifying factor 1 (SUMF1), dipeptidyl peptidase 2/7 (DPP7), glutamyl aminopeptidase (ENPEP), WAP four-disulfide core domain 2 (WFDC2), and others. DDC, which catalyzes the final step in dopamine synthesis, particularly stands out as a novel hit with a compelling mechanistic link to PD pathogenesis. DDC is consistently upregulated in the CSF and urine of treatment-naïve PD, prodromal PD, and GBA or LRRK2 carrier participants by all three proteomics methods. We show that CSF DDC levels correlate with clinical symptom severity in treatment-naïve PD patients and can be used to accurately diagnose PD and prodromal PD. This suggests that urine and CSF DDC could be a promising diagnostic and prognostic marker with utility in both clinical care and translational research.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Dopa Descarboxilase/genética , Proteômica , Biomarcadores/líquido cefalorraquidiano , Plasma/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Descarboxilases de Aminoácido-L-Aromático
7.
Mov Disord ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817039

RESUMO

Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

8.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800467

RESUMO

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Assuntos
Concussão Encefálica , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Criança , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Imageamento por Ressonância Magnética , Cognição
9.
Mov Disord ; 38(7): 1262-1272, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157056

RESUMO

BACKGROUND: Cerebrovascular dysfunction in Parkinson's disease (PD) is heterogeneous and may contribute to disease pathophysiology or progression. There is a need to understand the mechanisms by which cerebrovascular dysfunction is altered in participants with PD. OBJECTIVES: The objective of this study is to test the hypothesis that participants with PD exhibit a significant reduction in the ability of the cerebral vessels to dilate in response to vasoactive challenges relative to healthy controls (HC). METHODS: The current study uses a vasodilatory challenge while participants undergo functional magnetic resonance imaging to quantify the amplitude and delay of cerebrovascular reactivity in participants with PD relative to age and sex-matched HC. An analysis of covariance was used to evaluate differences in cerebrovascular reactivity amplitude and latency between PD participants and HC. RESULTS: A significant main effect of group was observed for whole-brain cerebrovascular reactivity amplitude (F(1, 28) = 4.38, p = 0.046, Hedge's g = 0.73) and latency (F(1, 28) = 16.35, p < 0.001, Hedge's g = 1.42). Participants with PD exhibited reduced whole-brain amplitude and increased latencies in cerebrovascular reactivity relative to HC. The evaluation of regional effects indicates that the largest effects were observed in the cuneus, precuneus, and parietal regions. CONCLUSIONS: PD participants exhibited reduced and delayed cerebrovascular reactivity. This dysfunction may play an important role in chronic hypoxia, neuroinflammation, and protein aggregation, mechanisms that could lead to disease progression. Cerebrovascular reactivity may serve as an important biomarker and target for future interventions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Lobo Occipital , Lobo Parietal
10.
Brain ; 145(11): 4042-4055, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35357463

RESUMO

Dopaminergic medication is widely used to alleviate motor symptoms of Parkinson's disease, but these medications also impact cognition with significant variability across patients. It is hypothesized that dopaminergic medication impacts cognition and working memory in Parkinson's disease by modulating frontoparietal-basal ganglia cognitive control circuits, but little is known about the underlying causal signalling mechanisms and their relation to individual differences in response to dopaminergic medication. Here we use a novel state-space computational model with ultra-fast (490 ms resolution) functional MRI to investigate dynamic causal signalling in frontoparietal-basal ganglia circuits associated with working memory in 44 Parkinson's disease patients ON and OFF dopaminergic medication, as well as matched 36 healthy controls. Our analysis revealed aberrant causal signalling in frontoparietal-basal ganglia circuits in Parkinson's disease patients OFF medication. Importantly, aberrant signalling was normalized by dopaminergic medication and a novel quantitative distance measure predicted individual differences in cognitive change associated with medication in Parkinson's disease patients. These findings were specific to causal signalling measures, as no such effects were detected with conventional non-causal connectivity measures. Our analysis also identified a specific frontoparietal causal signalling pathway from right middle frontal gyrus to right posterior parietal cortex that is impaired in Parkinson's disease. Unlike in healthy controls, the strength of causal interactions in this pathway did not increase with working memory load and the strength of load-dependent causal weights was not related to individual differences in working memory task performance in Parkinson's disease patients OFF medication. However, dopaminergic medication in Parkinson's disease patients reinstated the relation with working memory performance. Our findings provide new insights into aberrant causal brain circuit dynamics during working memory and identify mechanisms by which dopaminergic medication normalizes cognitive control circuits.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Dopaminérgicos/uso terapêutico , Gânglios da Base , Cognição/fisiologia , Imageamento por Ressonância Magnética
11.
J ECT ; 38(2): 88-94, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613008

RESUMO

OBJECTIVE: Electroconvulsive therapy (ECT) remains the benchmark for treatment resistant depression, yet its cognitive adverse effects have a negative impact on treatment. A predictive safety biomarker early in ECT treatment is needed to identify patients at cognitive risk to maximize therapeutic outcomes and minimize adverse effects. We used ictal electroencephalography frequency analysis from suprathreshold treatments to assess the relationships between ECT dose, ictal power across different frequency domains, and cognitive outcomes. METHODS: Seventeen subjects with treatment resistant depression received right unilateral ECT. Structural magnetic resonance imaging was obtained pre-ECT for electric field modeling to assess ECT dose. Serial assessments with 24-lead electroencephalography captured ictal activity. Clinical and cognitive assessments were performed before and after ECT. The primary cognitive outcome was the change in Delis Kaplan Executive Function Verbal Fluency Letter Fluency. RESULTS: Ictal theta (4-8 Hz) power in the Fp1/Fp2 channels was associated with both whole-brain electric field strength (t(2,12) = 19.5, P = 0.007)/(t(2,10) = 21.85, P = 0.02) and Delis Kaplan Executive Function Verbal Fluency Letter Fluency scores (t(2,12) = -2.05, P = 0.05)/(t(2,10) = -2.20, P = 0.01). Other frequency bands (beta, alpha, delta, and gamma) did not demonstrate this relationship. CONCLUSIONS: This pilot data identify ictal theta power as a potential safety biomarker in ECT and is related to the strength of the ECT dose. Ictal theta power could prove to be a convenient and powerful tool for clinicians to identify those patients most susceptible to cognitive impairment early in the treatment series. Additional studies are needed to assess the role of longitudinal changes in ictal theta power throughout the ECT series.


Assuntos
Eletroconvulsoterapia , Biomarcadores , Encéfalo , Eletroconvulsoterapia/efeitos adversos , Eletroconvulsoterapia/métodos , Eletroencefalografia/métodos , Humanos , Projetos Piloto , Resultado do Tratamento
12.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869961

RESUMO

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Assuntos
Função Executiva/fisiologia , Neuroimagem Funcional/normas , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem , Adulto Jovem
13.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30407681

RESUMO

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Assuntos
Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Adulto , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino
14.
Ann Behav Med ; 52(5): 393-405, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29659656

RESUMO

Background: The developmental period of adolescence marks the initiation of new socioemotional and physical behaviors, including sexual intercourse. However, little is known about neurodevelopmental influences on adolescent sexual decision-making. Purpose: We sought to determine how subcortical brain volume correlated with condom use, and whether those associations differed by gender and pubertal development. Methods: We used FreeSurfer to extract subcortical volume among N = 169 sexually experienced youth (mean age 16.07 years; 31.95% female). We conducted multiple linear regressions to examine the relationship between frequency of condom use and subcortical volume, and whether these associations would be moderated by gender and pubertal development. Results: We found that the relationship between brain volume and condom use was better accounted for by pubertal development than by gender, and moderated the association between limbic brain volume and condom use. No significant relationships were observed in reward areas (e.g., nucleus accumbens) or prefrontal cortical control areas. Conclusions: These data highlight the potential relevance of subcortical socioemotional processing structures in adolescents' sexual decision-making.


Assuntos
Comportamento do Adolescente/fisiologia , Desenvolvimento do Adolescente/fisiologia , Sistema Límbico/anatomia & histologia , Puberdade/fisiologia , Assunção de Riscos , Sexo Seguro/fisiologia , Adolescente , Preservativos , Feminino , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino
15.
Cereb Cortex ; 27(5): 2831-2840, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166168

RESUMO

Parsing multisensory information from a complex external environment is a fundamental skill for all organisms. However, different organizational schemes currently exist for how multisensory information is processed in human (supramodal; organized by cognitive demands) versus primate (organized by modality/cognitive demands) lateral prefrontal cortex (LPFC). Functional magnetic resonance imaging results from a large cohort of healthy controls (N = 64; Experiment 1) revealed a rostral-caudal stratification of LPFC for auditory versus visual attention during an audio-visual Stroop task. The stratification existed in spite of behavioral and functional evidence of increased interference from visual distractors. Increased functional connectivity was also observed between rostral LPFC and auditory cortex across independent samples (Experiments 2 and 3) and multiple methodologies. In contrast, the caudal LPFC was preferentially activated during visual attention but functioned in a supramodal capacity for resolving multisensory conflict. The caudal LPFC also did not exhibit increased connectivity with visual cortices. Collectively, these findings closely mirror previous nonhuman primate studies suggesting that visual attention relies on flexible use of a supramodal cognitive control network in caudal LPFC whereas rostral LPFC is specialized for directing attention to auditory inputs (i.e., human auditory fields).


Assuntos
Vias Aferentes/fisiologia , Atenção , Percepção Auditiva/fisiologia , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Vias Aferentes/diagnóstico por imagem , Análise de Variância , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
16.
Hum Brain Mapp ; 37(11): 4006-4016, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27329671

RESUMO

While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Lobo Frontal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Inteligência , Lobo Parietal/diagnóstico por imagem , Caracteres Sexuais , Substância Branca/diagnóstico por imagem , Conectoma , Análise Fatorial , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Vias Neurais/diagnóstico por imagem , Tamanho do Órgão , Escalas de Wechsler , Adulto Jovem
17.
J Psychiatry Neurosci ; 41(5): 312-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883319

RESUMO

BACKGROUND: Previous studies of response inhibition in patients with schizophrenia have focused on reactive inhibition tasks (e.g., stop-signal, go/no-go), primarily observing lateral prefrontal cortex abnormalities. However, recent studies suggest that purposeful and sustained (i.e., proactive) inhibition may also be affected in these patients. METHODS: Patients with chronic schizophrenia and healthy controls underwent fMRI while inhibiting motor responses during multisensory (audiovisual) stimulation. Resting state data were also collected. RESULTS: We included 37 patients with schizophrenia and 37 healthy controls in our study. Both controls and patients with schizophrenia successfully inhibited the majority of overt motor responses. Functional results indicated basic inhibitory failure in the lateral premotor and sensorimotor cortex, with opposing patterns of positive (schizophrenia) versus negative (control) activation. Abnormal activity was associated with independently assessed signs of psychomotor retardation. Patients with schizophrenia also exhibited unique activation of the pre-supplementary motor area (pre-SMA)/SMA and precuneus relative to baseline as well as a failure to deactivate anterior nodes of the default mode network. Independent resting-state connectivity analysis indicated reduced connectivity between anterior (task results) and posterior regions of the sensorimotor cortex for patients as well as abnormal connectivity between other regions (cerebellum, thalamus, posterior cingulate gyrus and visual cortex). LIMITATIONS: Aside from rates of false-positive responses, true proactive response inhibition tasks do not provide behavioural metrics that can be independently used to quantify task performance. CONCLUSION: Our results suggest that basic cortico-cortico and intracortical connections between the sensorimotor cortex and adjoining regions are impaired in patients with schizophrenia and that these impaired connections contribute to inhibitory failures (i.e., a positive rather than negative hemodynamic response).


Assuntos
Percepção Auditiva/fisiologia , Atividade Motora/fisiologia , Inibição Proativa , Esquizofrenia/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Doença Crônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Descanso , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico , Córtex Sensório-Motor/diagnóstico por imagem
18.
J Int Neuropsychol Soc ; 22(2): 240-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26888620

RESUMO

OBJECTIVES: One of the most prominent features of schizophrenia is relatively lower general cognitive ability (GCA). An emerging approach to understanding the roots of variation in GCA relies on network properties of the brain. In this multi-center study, we determined global characteristics of brain networks using graph theory and related these to GCA in healthy controls and individuals with schizophrenia. METHODS: Participants (N=116 controls, 80 patients with schizophrenia) were recruited from four sites. GCA was represented by the first principal component of a large battery of neurocognitive tests. Graph metrics were derived from diffusion-weighted imaging. RESULTS: The global metrics of longer characteristic path length and reduced overall connectivity predicted lower GCA across groups, and group differences were noted for both variables. Measures of clustering, efficiency, and modularity did not differ across groups or predict GCA. Follow-up analyses investigated three topological types of connectivity--connections among high degree "rich club" nodes, "feeder" connections to these rich club nodes, and "local" connections not involving the rich club. Rich club and local connectivity predicted performance across groups. In a subsample (N=101 controls, 56 patients), a genetic measure reflecting mutation load, based on rare copy number deletions, was associated with longer characteristic path length. CONCLUSIONS: Results highlight the importance of characteristic path lengths and rich club connectivity for GCA and provide no evidence for group differences in the relationships between graph metrics and GCA.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/etiologia , Inteligência/fisiologia , Vias Neurais/fisiopatologia , Esquizofrenia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Seguimentos , Testes Genéticos , Variação Genética/genética , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Esquizofrenia/complicações , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto Jovem
19.
AIDS Behav ; 20 Suppl 1: S97-108, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26290051

RESUMO

Human adolescents engage in very high rates of unprotected sex. This behavior has a high potential for unintended, serious, and sustained health consequences including HIV/AIDS. Despite these serious health consequences, we know little about the neural and cognitive factors that influence adolescents' decision-making around sex, and their potential overlap with behaviorally co-occurring risk behaviors, including alcohol use. Thus, in this review, we evaluate the developmental neuroscience of sexual risk and alcohol use for human adolescents with an eye to relevant prevention and intervention implications.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Neurociência Cognitiva , Infecções por HIV/prevenção & controle , Assunção de Riscos , Comportamento Sexual , Adolescente , Consumo de Bebidas Alcoólicas/efeitos adversos , Tomada de Decisões , Feminino , Humanos , Masculino , Inquéritos e Questionários , Sexo sem Proteção
20.
Hum Brain Mapp ; 36(4): 1407-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25491047

RESUMO

This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence.


Assuntos
Núcleo Caudado/anatomia & histologia , Inteligência , Adolescente , Adulto , Envelhecimento/patologia , Feminino , Humanos , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Análise de Regressão , Caracteres Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA