Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416776

RESUMO

The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.


Assuntos
Leishmania mexicana , Leishmania , Parasitos , Psychodidae , Animais , Leishmania mexicana/genética , Ciclo Celular , Divisão Celular , Psychodidae/parasitologia , Mamíferos
2.
Proc Natl Acad Sci U S A ; 120(10): e2220828120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848551

RESUMO

Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.


Assuntos
Leishmania donovani , Psychodidae , Humanos , Animais , Estresse Oxidativo/genética , Reparo do DNA/genética , Mutação
3.
PLoS Pathog ; 18(3): e1010375, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294501

RESUMO

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Proteômica
4.
Parasitol Res ; 123(3): 170, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526739

RESUMO

In Uzbekistan, the number of reported leishmaniasis cases is rising at the alarming rate. In this work, we studied the phlebotomine sand fly (Diptera: Phlebotominae) diversity in the foci of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan and compared it with the data obtained for the same area 50 years ago, when infection prevalence was reportedly low. We found that the implicated vector for zoonotic leishmaniasis, P. papatasi, remained eudominant; the proportion of implicated anthroponotic leishmaniasis vector, P. sergenti, rose significantly from averaged 5.4 to 41.4%; Phlebotomus alexandri, a suspected visceral leishmaniasis vector, was eudominant at two sites, and a second suspected vector for this disease, P. longiductus, was newly recorded in the region. We conclude that the increase in the documented cases of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan may be connected to the changes in fauna of sand flies vectoring Leishmania spp.


Assuntos
Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Uzbequistão/epidemiologia , Insetos Vetores , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia
5.
PLoS Pathog ; 17(6): e1009654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34115806

RESUMO

Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.


Assuntos
Ceratopogonidae/parasitologia , Insetos Vetores/parasitologia , Leishmania , Leishmaniose/transmissão , Animais , Camundongos
6.
Parasitology ; 150(2): 129-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453145

RESUMO

In this work we reviewed historical and recent data on Leishmania spp. infection combining data collected in Turkmenistan, Uzbekistan, Kazakhstan, Kyrgyzstan, Iran, China and Mongolia. We specifically focused on a complex of co-existing species (Leishmania major, Leishmania turanica and Leishmania gerbilli) sharing the same animal reservoirs and vectors. In addition, we analysed the presence of dsRNA viruses in these species and discussed future research directions to identify species-specific traits, which may determine susceptibility of different Leishmania spp. to viral infection.


Assuntos
Leishmania major , Leishmaniose Cutânea , Leishmaniose , Animais , Leishmaniose Cutânea/epidemiologia , Reservatórios de Doenças , Gerbillinae , Leishmaniose/epidemiologia , Turcomenistão
7.
PLoS Pathog ; 15(6): e1007828, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242261

RESUMO

The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.


Assuntos
Flagelos/metabolismo , Leishmania/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/parasitologia , Animais , Flagelos/genética , Leishmania/genética , Proteoma/genética , Proteínas de Protozoários/genética
8.
BMC Genomics ; 20(1): 726, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601168

RESUMO

BACKGROUND: Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. RESULTS: All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as ß-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. CONCLUSIONS: We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.


Assuntos
Perfilação da Expressão Gênica/métodos , Leishmania/classificação , Proteínas de Protozoários/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Regulação da Expressão Gênica , Tamanho do Genoma , Genômica , Especificidade de Hospedeiro , Leishmania/genética , Filogenia , Ploidias , Sequenciamento do Exoma
9.
PLoS Pathog ; 13(1): e1006130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095465

RESUMO

Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania major/patogenicidade , Leishmaniose/transmissão , Proteínas de Protozoários/metabolismo , Virulência/fisiologia , Animais , Antígenos de Protozoários/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Insetos Vetores/parasitologia , Leishmania major/crescimento & desenvolvimento , Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Psychodidae/parasitologia
10.
Mem Inst Oswaldo Cruz ; 113(5): e170333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513819

RESUMO

BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.


Assuntos
Galactose/metabolismo , Glicoesfingolipídeos/metabolismo , Insetos Vetores/fisiologia , Leishmania major/fisiologia , Phlebotomus/parasitologia , Psychodidae/parasitologia , Animais , Glicoesfingolipídeos/química , Interações Hospedeiro-Patógeno , Insetos Vetores/química , Leishmania major/química , Especificidade da Espécie
11.
Parasitology ; 144(4): 403-410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27876097

RESUMO

Leishmania parasites alternate in their life cycle between promastigote stages that develop in the gut of phlebotomine sand flies and amastigotes residing inside phagocytic cells of vertebrate hosts. For experimental infections of sand flies, promastigotes are frequently used as this way of infection is technically easier although ingestion of promastigotes by sand flies is unnatural. Here we aimed to answer a critical question, to what extent do promastigote-initiated experimental infections differ from those initiated with intracellular amastigotes. We performed side-by-side comparison of Leishmania development in Phlebotomus argentipes females infected alternatively with promastigotes from log-phase cultures or amastigotes grown ex vivo in macrophages. Early stage infections showed substantial differences in parasite load and representation of morphological forms. The differences disappeared along the maturation of infections; both groups developed heavy late-stage infections with colonization of the stomodeal valve, uniform representation of infective metacyclics and equal efficiency of transmission. The results showed that studies focusing on early phase of Leishmania development in sand flies should be initiated with intracellular amastigotes. However, the use of promastigote stages for sand fly infections does not alter significantly the final outcome of Leishmania donovani development in P. argentipes and their transmissibility to the vertebrate host.


Assuntos
Leishmania donovani/crescimento & desenvolvimento , Phlebotomus/parasitologia , Animais , Feminino , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Camundongos , Camundongos Endogâmicos BALB C
12.
PLoS Negl Trop Dis ; 18(10): e0012597, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39405300

RESUMO

BACKGROUND: Several new species of Leishmania have recently emerged in Europe, probably as the result of global changes and increased human migration from endemic areas. In this study, we tested whether two sand fly species, the Western Mediterranean Phlebotomus perniciosus and the Eastern Mediterranean P. tobbi, are competent vectors of L. donovani, L. major and L. martiniquensis. METHODOLOGY/PRINCIPAL FINDINGS: Sand flies were infected through the chick skin membrane using Leishmania species and strains of various geographical origins. Leishmania infections were evaluated by light microscopy and qPCR, and the representation of morphological forms was assessed from Giemsa-stained gut smears. Neither P. perniciosus nor P. tobbi supported the development of L. martiniquensis, but L. major and L. donovani in both species survived defecation of blood meal remnants, colonized the stomodeal valve and produced metacyclic stages. The results with L donovani have shown that infection rates in sand flies can be strain-specific; therefore, to determine vector competence or refractoriness, it is optimal to test at least two strains of Leishmania. CONCLUSIONS, SIGNIFICANCE: Both sand fly species tested are potential vectors of L. donovani and L. major in Mediterranean area. However, further studies will be needed to identify European vectors of L. martiniquensis and to test the ability of other European sand fly species to transmit L. major, L. donovani, L. tropica and L. infantum.


Assuntos
Insetos Vetores , Leishmania , Phlebotomus , Animais , Phlebotomus/parasitologia , Phlebotomus/fisiologia , Europa (Continente) , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Leishmania/fisiologia , Leishmania/classificação , Leishmania/genética , Feminino , Galinhas/parasitologia , Leishmaniose/transmissão , Leishmaniose/parasitologia , Humanos
13.
PLoS Negl Trop Dis ; 18(5): e0011897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739677

RESUMO

Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.


Assuntos
Arvicolinae , Modelos Animais de Doenças , Leishmania , Leishmaniose , Camundongos Endogâmicos BALB C , Animais , Leishmania/classificação , Leishmaniose/parasitologia , Camundongos , Cricetinae , Arvicolinae/parasitologia , Cricetulus , Feminino
14.
Int J Parasitol Drugs Drug Resist ; 25: 100554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941845

RESUMO

Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.


Assuntos
Antimônio , Resistência a Medicamentos , Leishmania major , Leishmaniose Cutânea , Phlebotomus , Phlebotomus/parasitologia , Phlebotomus/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Animais , Antimônio/farmacologia , Resistência a Medicamentos/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Insetos Vetores/parasitologia , Insetos Vetores/efeitos dos fármacos , Fenótipo , Antiprotozoários/farmacologia , Concentração Inibidora 50 , Feminino
15.
Nat Commun ; 15(1): 6960, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138209

RESUMO

Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.


Assuntos
Flagelos , Leishmania , Psychodidae , Animais , Leishmania/fisiologia , Leishmania/genética , Leishmania/metabolismo , Psychodidae/parasitologia , Flagelos/metabolismo , Adesão Celular , Insetos Vetores/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Estágios do Ciclo de Vida , Leishmaniose/parasitologia , Leishmaniose/transmissão , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Feminino
16.
PLoS Negl Trop Dis ; 18(1): e0011920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295092

RESUMO

Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Leishmania donovani/genética , Psychodidae/genética , Cruzamentos Genéticos , Genômica , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia
17.
Nat Med ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095597

RESUMO

The leishmaniases are globally important parasitic diseases for which no human vaccines are currently available. To facilitate vaccine development, we conducted an open-label observational study to establish a controlled human infection model (CHIM) of sand fly-transmitted cutaneous leishmaniasis (CL) caused by Leishmania major. Between 24 January and 12 August 2022, we exposed 14 participants to L. major-infected Phlebotomus duboscqi. The primary objective was to demonstrate effectiveness of lesion development (take rate) and safety (absence of CL lesion at 12 months). Secondary and exploratory objectives included rate of lesion development, parasite load and analysis of local immune responses by immunohistology and spatial transcriptomics. Lesion development was terminated by therapeutic biopsy (between days 14 and 42 after bite) in ten participants with clinically compatible lesions, one of which was not confirmed by parasite detection. We estimated an overall take rate for CL development of 64% (9/14). Two of ten participants had one and one of ten participants had two lesion recurrences 4-8 months after biopsy that were treated successfully with cryotherapy. No severe or serious adverse events were recorded, but as expected, scarring due to a combination of CL and the biopsy procedure was evident. All participants were lesion free at >12-month follow-up. We provide the first comprehensive map of immune cell distribution and cytokine/chemokine expression in human CL lesions, revealing discrete immune niches. This CHIM offers opportunities for vaccine candidate selection based on human efficacy data and for a greater understanding of immune-mediated pathology. ClinicalTrials.gov identifier: NCT04512742 .

18.
Int J Parasitol ; 54(8-9): 391-400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663543

RESUMO

Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.


Assuntos
Catalase , Peróxido de Hidrogênio , Trypanosomatina , Catalase/metabolismo , Animais , Trypanosomatina/enzimologia , Trypanosomatina/genética , Peróxido de Hidrogênio/metabolismo , Citoplasma , Microcorpos/metabolismo
19.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111500

RESUMO

Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.

20.
Parasit Vectors ; 16(1): 126, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055860

RESUMO

BACKGROUND: Sergentomyia minuta (Diptera: Phlebotominae) is an abundant sand fly species in the Mediterranean basin and a proven vector of reptile parasite Leishmania (Sauroleishmania) tarentolae. Although it feeds preferentially on reptiles, blood meal analyses and detection of Leishmania (Leishmania) infantum DNA in wild-caught S. minuta suggest that occasional feeding may occur on mammals, including humans. Therefore, it is currently suspected as a potential vector of human pathogens. METHODS: A recently established S. minuta colony was allowed to feed on three reptile species (i.e. lizard Podarcis siculus and geckos Tarentola mauritanica and Hemidactylus turcicus) and three mammal species (i.e. mouse, rabbit and human). Sand fly mortality and fecundity were studied in blood-fed females, and the results were compared with Phlebotomus papatasi, vector of Leishmania (L.) major. Blood meal volumes were measured by haemoglobinometry. RESULTS: Sergentomyia minuta fed readily on three reptile species tested, neglected the mouse and the rabbit but took a blood meal on human. However, the percentage of females engorged on human volunteer was low in cage (3%) and feeding on human blood resulted in extended defecation times, higher post-feeding mortality and lower fecundity. The average volumes of blood ingested by females fed on human and gecko were 0.97 µl and 1.02 µl, respectively. Phlebotomus papatasi females readily fed on mouse, rabbit and human volunteer; a lower percentage of females (23%) took blood meal on the T. mauritanica gecko; reptilian blood increased mortality post-feeding but did not affect P. papatasi fecundity. CONCLUSIONS: Anthropophilic behaviour of S. minuta was experimentally demonstrated; although sand fly females prefer reptiles as hosts, they were attracted to the human volunteer and took a relatively high volume of blood. Their feeding times were longer than in sand fly species regularly feeding on mammals and their physiological parameters suggest that S. minuta is not adapted well for digestion of mammalian blood. Nevertheless, the ability to bite humans highlights the necessity of further studies on S. minuta vector competence to elucidate its potential role in circulation of Leishmania and phleboviruses pathogenic to humans.


Assuntos
Leishmania , Lagartos , Phlebotomus , Psychodidae , Feminino , Humanos , Coelhos , Animais , Camundongos , Phlebotomus/parasitologia , Psychodidae/parasitologia , Leishmania/genética , DNA/genética , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA