Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755111

RESUMO

Cyanobacteria have demonstrated their therapeutic potential for many human diseases. In this work, cyanobacterial extracts were screened for lipid reducing activity in zebrafish larvae and in fatty-acid-overloaded human hepatocytes, as well as for glucose uptake in human hepatocytes and ucp1 mRNA induction in murine brown adipocytes. A total of 39 cyanobacteria strains were grown and their biomass fractionated, resulting in 117 chemical fractions. Reduction of neutral lipids in zebrafish larvae was observed for 12 fractions and in the human hepatocyte steatosis cell model for five fractions. The induction of ucp1 expression in murine brown adipocytes was observed in six fractions, resulting in a total of 23 bioactive non-toxic fractions. All extracts were analyzed by untargeted UPLC-Q-TOF-MS mass spectrometry followed by multivariate statistical analysis to prioritize bioactive strains. The metabolite profiling led to the identification of two markers with lipid reducing activity in zebrafish larvae. Putative compound identification using mass spectrometry databases identified them as phosphatidic acid and aromatic polyketides derivatives-two compound classes, which were previously associated with effects on metabolic disorders. In summary, we have identified cyanobacterial strains with promising lipid reducing activity, whose bioactive compounds needs to be identified in the future.

2.
Mar Environ Res ; 187: 105966, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996639

RESUMO

Climate change is affecting Gelidium corneum (Hudson) J.V. Lamouroux fields in the Bay of Biscay by reducing its cover and biomass. Understanding those changes requires a good characterization of the responses of this species to different stressors, particularly the effects on key processes such as the vegetative propagation. Here, we aimed to characterize the interactive effect of temperature (15, 20 and 25 °C) and irradiance (5-10, 55-60 and 95-100 µmol*m-2*s-1) on two phases of the vegetative propagation process: the re-attachment capacity and the survival of re-attached fragments. The study findings revealed significant effects of both temperature and irradiance in the re-attachment capacity of the species, with higher rates of attachment registered at 20 °C and 5-10 µmol*m-2*s-1 after 10, 20 and 30 days of culture. However, the interaction effects were not significant at any time interval. At higher or lower temperatures and increasing irradiances, the attachment capacity was reduced. On the other hand, irradiance was demonstrated to be the main factor controlling the survival of rhizoids. In fact, higher levels of irradiance generated severe damage on rhizoids, and thus, conditioned the development of new plants. According to this, it seems clear that the vegetative propagation process of this species is expected to become more vulnerable as both variables are expected to rise due to climate change. An increased vulnerability of this species may have several implications from an ecological and economic perspective, so we encourage to continue exploring the factors and processes controlling its distribution in order to adopt better management actions in the future.


Assuntos
Rodófitas , Temperatura , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA