Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0274553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173972

RESUMO

BACKGROUND: Collecting information on sustainability of immune responses after infection or vaccination is crucial to inform medical decision-making and vaccination strategies. Data on how long-lasting antibodies against SARS-COV-2 could provide a humoral and protective immunity and prevent reinfection with SARS-CoV-2 or its variants is particularly valuable. This study presents a novel method to quantitatively measure and monitor the diversity of SARS-CoV-2 specific antibody profiles over time. METHODS: Serum samples from two groups were used in this study: Samples from 20 naturally infected subjects (followed for up to 1 year) and samples from 83 subjects vaccinated with one or two doses of the Pfizer BioNtech vaccine (BNT162b2/BNT162b2) (followed for up to 6 months). The Multi-SARS-CoV-2 assay, a multiparameter serology test developed for the serological confirmation of past-infections, was used to determine the reactivity of six different SARS-CoV-2 antigens. For each subject sample, 3 dilutions (1/50, 1/400 and 1/3200) were defined as an optimal set over the six antigens and their respective linear ranges. This allowed accurate quantification of the corresponding six antibodies. Nonlinear mixed-effects modelling was applied to convert intensity readings from 3 determined dilutions to a single quantification value for each antibody. RESULTS: Median half-life for the 20 naturally infected vs 74 vaccinated subjects (two doses) was 120 vs 50 days for RBD, 127 vs 53 days for S1 and 187 vs 86 days for S2 antibodies respectively. CONCLUSION: The newly proposed method, based on a series of a limited number of dilutions, can convert a conventional qualitative assay into a quantitative assay. This conversion helps define the sustainability of specific immune responses against each relevant viral antigen and can help in defining the protection characteristics after an infection or a vaccination.


Assuntos
COVID-19 , Imunidade Humoral , Anticorpos Antivirais , Antígenos Virais , Vacina BNT162 , Humanos , SARS-CoV-2
2.
PLoS Negl Trop Dis ; 16(10): e0010827, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36190992

RESUMO

BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is a serious public health problem throughout Latin America. With 6 million people infected, there is a major international effort to develop new drugs. In the chronic phase of the disease, the parasite burden is extremely low, infections are highly focal at a tissue/organ level, and bloodstream parasites are only intermittently detectable. As a result, clinical trials are constrained by difficulties associated with determining parasitological cure. Even highly sensitive PCR methodologies can be unreliable, with a tendency to produce "false-cure" readouts. Improved diagnostic techniques and biomarkers for cure are therefore an important medical need. METHODOLOGY/PRINCIPAL FINDINGS: Using an experimental mouse model, we have combined a multiplex assay system and highly sensitive bioluminescence imaging to evaluate serological procedures for diagnosis of T. cruzi infections and confirmation of parasitological cure. We identified a set of three antigens that in the context of the multiplex serology system, provide a rapid, reactive and highly accurate read-out of both acute and chronic T. cruzi infection. In addition, we describe specific antibody responses where down-regulation can be correlated with benznidazole-mediated parasite reduction and others where upregulation is associated with persistent infection. One specific antibody (IBAG39) highly correlated with the bioluminescence flux and represents a promising therapy monitoring biomarker in mice. CONCLUSIONS/SIGNIFICANCE: Robust, high-throughput methodologies for monitoring the efficacy of anti-T. cruzi drug treatment are urgently required. Using our experimental systems, we have identified markers of infection or parasite reduction that merit assessing in a clinical setting for the longitudinal monitoring of drug-treated patients.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Biomarcadores , Doença de Chagas/diagnóstico , Doença de Chagas/tratamento farmacológico , Imunoensaio/métodos , Testes Imunológicos , Camundongos
3.
iScience ; 25(11): 105467, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388998

RESUMO

The efficacy of GABAergic synapses relies on the number of postsynaptic GABAA receptors (GABAARs), which is regulated by a diffusion capture mechanism. Here, we report that the conformational state of GABAARs influences their membrane dynamics. Indeed, pharmacological and mutational manipulations of receptor favoring active or desensitized states altered GABAAR diffusion leading to the disorganization of GABAAR subsynaptic domains and gephyrin scaffold, as detected by super-resolution microscopy. Active and desensitized receptors were confined to perisynaptic endocytic zones, and some of them were further internalized. We propose that following their activation or desensitization, synaptic receptors rapidly diffuse at the periphery of the synapse where they remain confined until they switch back to a resting state or are internalized. We speculate that this allows a renewal of activatable receptors at the synapse, contributing to maintain the efficacy of the synaptic transmission, in particular on sustained GABA transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA