Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pathol ; 262(2): 147-160, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38010733

RESUMO

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Adolescente , Humanos , Genes p53 , Osteossarcoma/genética , Osteossarcoma/patologia , Mutação , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Regiões Promotoras Genéticas/genética , Fusão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Lab Invest ; 104(1): 100283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931683

RESUMO

Osteosarcoma is the most common primary bone malignancy, often detected in children and adolescents and commonly associated with TP53 alterations along with a high number of chromosomal rearrangements. However, osteosarcoma can affect patients of any age, and some tumors display less genetic complexity. Besides TP53 variants, data on key driving mutations are lacking for many osteosarcomas, particularly those affecting adults. To detect osteosarcoma-specific alterations, we screened transcriptomic and genomic sequencing and copy number data from 150 bone tumors originally diagnosed as osteosarcomas. To increase the precision in gene fusion detection, we developed a bioinformatic tool denoted as NAFuse, which extracts gene fusions that are verified at both the genomic and transcriptomic levels. Apart from the already reported genetic subgroups of osteosarcoma with TP53 structural variants, or MDM2 and/or CDK4 amplification, we did not identify any recurrent genetic driver that signifies the remaining cases. Among the plethora of mutations identified, we found genetic alterations characteristic of, or similar to, those of other bone and soft tissue tumors in 8 cases. These mutations were found in tumors with relatively few other genetic alterations or in adults. Due to the lack of clinical context and available tissue, we can question the diagnosis only on a genetic basis. However, our findings support the notion that osteosarcomas with few chromosomal alterations or adult onset seem genetically distinct from conventional osteosarcomas of children and adolescents.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto , Adolescente , Criança , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Mutação , Neoplasias Ósseas/genética , Sequência de Bases
3.
Genes Chromosomes Cancer ; 62(2): 93-100, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36124964

RESUMO

Chromosomal instability is a common feature in malignant tumors. Previous studies have indicated that inactivation of the classical tumor suppressor genes RB1, CDKN2A, and TP53 may contribute to chromosomal aberrations in cancer by disrupting different aspects of the cell cycle and DNA damage checkpoint machinery. We performed a side-by-side comparison of how inactivation of each of these genes affected chromosomal stability in vitro. Using CRISPR-Cas9 technology, RB1, CDKN2A, and TP53 were independently knocked out in karyotypically normal immortalized cells, after which these cells were followed over time. Bulk RNA sequencing revealed a distinct phenotype with upregulation of pathways related to cell cycle control and proliferation in all three knockouts. Surprisingly, the RB1 and CDKN2A knocked out cell lines did not harbor more copy number aberrations than wild-type cells, despite culturing for months. The TP53-knocked out cells, in contrast, showed a massive amount of copy number alterations and saltatory evolution through whole genome duplication. This side-by-side comparison indicated that the effects on chromosomal stability from inactivation of RB1 and CDKN2A are negligible compared to inactivation of TP53, under the same conditions in a nonstressful environment, even though partly overlapping regulatory pathways are affected. Our data suggest that loss of RB1 and CDKN2A alone is not enough to trigger surviving detectable aneuploid clones while inactivation of TP53 on its own caused massive CIN leading to saltatory clonal evolution in vitro and clonal selection.


Assuntos
Instabilidade Cromossômica , Proteína Supressora de Tumor p53 , Humanos , Instabilidade Cromossômica/genética , Proteína Supressora de Tumor p53/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Retinoblastoma/genética
4.
Mod Pathol ; 36(2): 100011, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853784

RESUMO

Bizarre parosteal osteochondromatous proliferation (BPOP) (Nora lesion) is a benign bone surface lesion, which most commonly occurs in the digits of young patients and has a high rate of recurrence. Histologically, it is composed of a mixture of disorganized bone, cartilage, and spindle cells in variable proportions and characterized by amorphous "blue bone" mineralization. Recurrent chromosomal abnormalities, including t(1;17)(q32-42;q21-23) and inv(7)(q21.1-22q31.3-32), have been reported in BPOP. However, the exact genes involved in the rearrangements remain unknown. In this study, we analyzed 8 BPOP cases affecting the fingers, toe, ulna, radius, and fibula of 5 female and 3 male patients, aged 5 to 68 years. RNA sequencing of 5 cases identified genetic fusions between COL1A2 and LINC-PINT in 3 cases and COL1A1::MIR29B2CHG fusion in 1, both validated using fluorescence in situ hybridization and reverse transcription (RT)-PCR. The remaining fusion-negative case harbored 3 COL1A1 mutations as revealed by whole-exome sequencing and confirmed using Sanger sequencing. All these genetic alterations were predicted to cause frameshift and/or truncation of COL1A1/2. The chromosomal locations of COL1A2 (7q21.3), LINC-PINT (7q32.3), COL1A1 (17q21.33), and MIR29B2CHG (1q32.2) were consistent with the breakpoints identified in the previous cytogenetic studies. Subsequent screening of 3 BPOPs using fluorescence in situ hybridization identified 1 additional case each with COL1A1 or COL1A2 rearrangement. Our findings are consistent with reported chromosomal abnormalities and implicate the disruption of type I collagen, and perhaps of either noncoding RNA gene as a tumor suppressor, in the tumorigenesis of BPOP. The prevalence and tumorigenic mechanisms of these COL1A1/2 alterations in BPOP require further investigation.


Assuntos
Neoplasias Ósseas , Neoplasias de Tecido Conjuntivo , Neoplasias de Tecidos Moles , Feminino , Humanos , Masculino , Proliferação de Células , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Mutação , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
5.
Genes Chromosomes Cancer ; 58(10): 731-736, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31066955

RESUMO

Conventional osteosarcoma is the most common primary malignancy of bone. This group of neoplasms is subclassified according to specific histological features, but hitherto there has been no correlation between subtype, treatment, and prognosis. By in-depth genetic analyses of a chondroblastoma-like osteosarcoma, we detect a genetic profile that is distinct from those previously reported in benign and malignant bone tumors. The overall genomic copy number profile was less complex than that typically associated with conventional osteosarcoma, and there was no activating point mutation in any of H3F3A, H3F3B, IDH1, IDH2, BRAF, or GNAS. Instead, we found a homozygous CDKN2A deletion, a DMD microdeletion and an FN1-FGFR1 gene fusion. The latter alteration has been described in phosphaturic mesenchymal tumor. This tumor type shares some morphological features with chondroblastoma-like osteosarcoma and we cannot rule out that the present case actually represents an FN1-FGFR1 positive malignant phosphaturic mesenchymal tumor of bone without osteomalacia.


Assuntos
Neoplasias Ósseas/genética , Condroblastoma/genética , Deleção de Genes , Mesenquimoma/genética , Fusão Oncogênica , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Condroblastoma/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Distrofina/genética , Fibronectinas/genética , Homozigoto , Humanos , Masculino , Mesenquimoma/metabolismo , Pessoa de Meia-Idade , Osteossarcoma/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
6.
J Pathol ; 243(2): 160-164, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28722204

RESUMO

Human brown fat tumours (hibernomas) show concomitant loss of the tumour suppressor genes MEN1 and AIP. We hypothesized that the brown fat phenotype is attributable to these mutations. Accordingly, in this study, we demonstrate that silencing of AIP in human brown preadipocytic and white fat cell lines results in the induction of the brown fat marker UCP1. In human adipocytic tumours, loss of MEN1 was found both in white (one of 51 lipomas) and in brown fat tumours. In contrast, concurrent loss of AIP was always accompanied by a brown fat morphology. We conclude that this white-to-brown phenotype switch in brown fat tumours is mediated by the loss of AIP. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo Marrom/fisiologia , Genes Supressores de Tumor/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoma/genética , Neoplasias Lipomatosas/genética , Linhagem Celular Tumoral , Inativação Gênica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Mutação/genética , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima/genética
7.
Biochim Biophys Acta Biomembr ; 1864(1): 183795, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627746

RESUMO

Aquaporins play a crucial role in water homeostasis in the human body, and recently the physiological importance of aquaporins as glycerol channels have been demonstrated. The aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) represent key glycerol channels, enabling glycerol flux across the membranes of cells. Adipocytes are the major source of glycerol and during lipolysis, glycerol is released to be metabolized by other tissues through a well-orchestrated process. Here we show that both AQP3 and AQP7 bind to the lipid droplet protein perilipin 1 (PLIN1), suggesting that PLIN1 is involved in the coordination of the subcellular translocation of aquaglyceroporins in human adipocytes. Moreover, in addition to aquaglyceroporins, we discovered by transcriptome sequencing that AQP1 is expressed in human primary adipocytes. AQP1 is mainly a water channel and thus is thought to be involved in the response to hyper-osmotic stress by efflux of water during hyperglycemia. Thus, this data suggests a contribution of both orthodox aquaporin and aquaglyceroporin in human adipocytes to maintain the homeostasis of glycerol and water during fasting and feeding.


Assuntos
Aquaporina 1/genética , Aquaporina 3/genética , Aquaporinas/genética , Hiperglicemia/genética , Perilipina-1/genética , Adipócitos/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Regulação da Expressão Gênica/genética , Glicerol/metabolismo , Homeostase/genética , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Transcriptoma/genética , Água/metabolismo
8.
J Pathol Clin Res ; 6(2): 107-112, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022484

RESUMO

Neurotrophic tyrosine receptor kinase (NTRK) fusions are promising molecular targets that have been described in a broad range of malignant tumours. Fusions commonly lead to the expression of chimeric proteins with constitutive tyrosine kinase activation that drives tumorigenesis. Despite a low prevalence among most solid tumours (<1%), the first encouraging results with pan-NTRK tyrosine kinase inhibitors (TKIs) such as larotrectinib or entrectinib stimulated the search for eligible patients. Here, we report the first three cases of osteosarcoma harbouring NTRK fusions, among 113 patients sequenced. It is also the first report on NTRK fusions within a tumour type characterised by highly rearranged genomes and abundant passenger mutations. Whereas the presence of NTRK gene fusions in many tumours is considered to be one of the main driver events for tumour progression, the three chimeric transcripts described here appear non-functional and likely represent randomly occurring passenger alterations. Particularly in tumours with complex karyotypes, it may therefore be advisable to specifically investigate the fusion transcripts for functional impact before considering targeted treatment approaches using pan-NTRK TKIs.


Assuntos
Neoplasias Ósseas/patologia , Transformação Celular Neoplásica/patologia , Proteínas de Fusão Oncogênica/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo
9.
Nat Commun ; 11(1): 579, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024830

RESUMO

Clonal heterogeneity and evolution has major implications for disease progression and relapse in acute myeloid leukemia (AML). To model clonal dynamics in vivo, we serially transplanted 23 AML cases to immunodeficient mice and followed clonal composition for up to 15 months by whole-exome sequencing of 84 xenografts across two generations. We demonstrate vast changes in clonality that both progress and reverse over time, and define five patterns of clonal dynamics: Monoclonal, Stable, Loss, Expansion and Burst. We also show that subclonal expansion in vivo correlates with a more adverse prognosis. Furthermore, clonal expansion enabled detection of very rare clones with AML driver mutations that were undetectable by sequencing at diagnosis, demonstrating that the vast majority of AML cases harbor multiple clones already at diagnosis. Finally, the rise and fall of related clones enabled deconstruction of the complex evolutionary hierarchies of the clones that compete to shape AML over time.


Assuntos
Evolução Clonal , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Progressão da Doença , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Sequenciamento do Exoma
10.
J Pathol Clin Res ; 6(4): 231-237, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542935

RESUMO

Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in-depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS-rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS-rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Deleção de Genes , Rearranjo Gênico , Neurofibromina 2/genética , Osteoblastoma/genética , Proteínas Proto-Oncogênicas c-fos/genética , Adolescente , Adulto , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Elementos Facilitadores Genéticos , Células Epitelioides/patologia , Europa (Continente) , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Osteoblastoma/patologia , Osteogênese , Fenótipo , Proteína Wnt-5a/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA