Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Br J Neurosurg ; : 1-6, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356586

RESUMO

BACKGROUND: Peripheral nerve injury is a common clinical disorder. The aim of the present study was to investigate the role of cerium oxide nanoparticles on axonal regeneration and functional recovery of the sciatic nerve after a crush injury in the rat model. METHOD: A total of 40 adult male Wistar rats were divided into four groups. The animals underwent deep anesthesia. Afterward, the right sciatic nerve of rats was exposed and crushed. In two experimental groups, rats were treated intraperitoneally with cerium oxide nanoparticles at the dosage of 20 or 80 mg/kg daily for 1 week. The control group was given a vehicle. Then, during the nerve regeneration motor and sensory function recovery tests, histomorphometric evaluations, histological assessment of gastrocnemius muscle, and gastrocnemius muscle wet weights tests were performed. RESULTS: Results demonstrated that the rate of nerve regeneration increased with the administration of cerium oxide nanoparticle in high doses. Also, the morphometric analysis showed that the number of myelinated fibers and myelin sheath thicknesses was significantly greater in the cerium oxide nanoparticle group versus the control group. Other parameters also improved in the cerium oxide nanoparticle treatment groups compared with the control group. CONCLUSION: These data indicate that this nanoparticle has therapeutic potential and can be considered as a new treatment for nervous system regeneration.

2.
Chemosphere ; 325: 138323, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906005

RESUMO

The urgent issues related to the catalytic processes and energy applications have accelerated the development of hybrid and smart materials. MXenes are a new family of atomic layered nanostructured materials that require considerable research. Tailorable morphologies, strong electrical conductivity, great chemical stability, large surface-to-volume ratios, tunable structures, among others are some significant characteristics that make MXenes appropriate for various electrochemical reactions, including dry reforming of methane, hydrogen evolution reaction, methanol oxidation reaction, sulfur reduction reaction, Suzuki-Miyaura coupling reaction, water-gas shift reaction, and so forth. MXenes, on the other hand, have a fundamental drawback of agglomeration, as well as poor long-term recyclability and stability. One possibility for overcoming the restrictions is the fusion of nanosheets or nanoparticles with MXenes. Herein, the relevant literature on the synthesis, catalytic stability and reusability, and applications of several MXene-based nanocatalysts are deliberated including the merits and cons of the newer MXene-based catalysts.


Assuntos
Nanopartículas , Nanoestruturas , Catálise , Condutividade Elétrica
3.
J Colloid Interface Sci ; 587: 538-549, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33223237

RESUMO

Climate change, global warming, and population growth have led researchers to use eco-sociable procedures for the N2 reduction reaction. It has discovered that N2 molecule can be transformed into NH3 in ambient circumstances with nanocomposites upon visible irradiation. In this research paper, a new visible-light-driven photocatalyst was constructed, with various weight percents of FeOCl particles (10, 20, 30, and 40%) that have adhered on NS-CN. Subsequently, multiple features of the nanocomposites were assayed in detail. The results illustrated that the NS-CN/FeOCl (20%) system has remarkable photoactivity in the NH4+ production reaction in comparison with the NS-CN and CN, which showed 2.5 and 8.6 higher activity, respectively. The durability of NS-CN/FeOCl (20%) system, as a substantial factor, was assayed for 5 recycles. Moreover, the effect of electron quenchers, pH of media, and solvent was studied. At last, a feasible Z-scheme mechanism for the remarkable improvement of N2 fixation efficiency was offered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA