Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 624(7992): 545-550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030729

RESUMO

Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation1-3. However, despite recent experimental progress towards this hybridization4-15, concrete evidence for a chiral QH Josephson junction16-the elemental building block for coherent superconducting QH circuits-is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2ϕ0 magnetic flux periodicity16-19 (ϕ0 = h/2e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h/2e2 ≈ 12.9 kΩ. We observe reproducible 2ϕ0-periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface19-22. Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes23-32.

2.
Nature ; 605(7908): 51-56, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508777

RESUMO

ABSTARCT: When electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy1-5. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders6-11. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. However, confirming the existence of these ground states requires a direct visualization of their lattice-scale orders14. Here we image three distinct broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We explore the phase diagram by tuning the screening of the Coulomb interaction by a low- or high-dielectric-constant environment, and with a magnetic field. In the unscreened case, we find a Kekulé bond order, consistent with observations of an insulating state undergoing a magnetic-field driven Kosterlitz-Thouless transition15,16. Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low magnetic fields, and transits to a charge-density-wave order with partial sublattice polarization at higher magnetic fields. The Kekulé and charge-density-wave orders furthermore coexist with additional, secondary lattice-scale orders that enrich the phase diagram beyond current theory predictions6-10. This screening-induced tunability of broken-symmetry orders may prove valuable to uncover correlated phases of matter in other quantum materials.

3.
Nano Lett ; 19(2): 635-642, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30654611

RESUMO

We report on the evolution of the coherent electronic transport through a gate-defined constriction in a high-mobility graphene device from ballistic transport to quantum Hall regime upon increasing the magnetic field. At a low field, the conductance exhibits Fabry-Pérot resonances resulting from the npn cavities formed beneath the top-gated regions. Above a critical field B* corresponding to the cyclotron radius equal to the npn cavity length, Fabry-Pérot resonances vanish, and snake trajectories are guided through the constriction with a characteristic set of conductance oscillations. Increasing further the magnetic field allows us to probe the Landau level spectrum in the constriction and unveil distortions due to the combination of confinement and deconfinement of Landau levels in a saddle potential. These observations are confirmed by numerical calculations.

4.
J Phys Condens Matter ; 36(39)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697131

RESUMO

In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.

5.
Sci Adv ; 9(19): eadf7220, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172096

RESUMO

Quantum Hall (QH) edge channels propagating along the periphery of two-dimensional (2D) electron gases under perpendicular magnetic field are a major paradigm in physics. However, groundbreaking experiments that could use them in graphene are hampered by the conjecture that QH edge channels undergo a reconstruction with additional nontopological upstream modes. By performing scanning tunneling spectroscopy up to the edge of a graphene flake on hexagonal boron nitride, we show that QH edge channels are confined to a few magnetic lengths at the crystal edges. This implies that they are ideal 1D chiral channels defined by boundary conditions of vanishing electronic wave functions at the crystal edges, hence free of electrostatic reconstruction. We further evidence a uniform charge carrier density at the edges, incompatible with the existence of upstream modes. This work has profound implications for electron and heat transport experiments in graphene-based systems and other 2D crystalline materials.

6.
Phys Rev Lett ; 107(22): 225501, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22182031

RESUMO

We report transport measurements through graphene on SrTiO(3) substrates as a function of magnetic field B, carrier density n, and temperature T. The large dielectric constant of SrTiO(3) very effectively screens long-range electron-electron interactions and potential fluctuations, making Dirac electrons in graphene virtually noninteracting. The absence of interactions results in an unexpected behavior of the longitudinal resistance in the N=0 Landau level and in a large suppression of the transport gap in nanoribbons. The "bulk" transport properties of graphene at B=0 T, on the contrary, are completely unaffected by the substrate dielectric constant.

7.
Nat Nanotechnol ; 16(5): 555-562, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633403

RESUMO

Electron interferometry with quantum Hall (QH) edge channels in semiconductor heterostructures can probe and harness the exchange statistics of anyonic excitations. However, the charging effects present in semiconductors often obscure the Aharonov-Bohm interference in QH interferometers and make advanced charge-screening strategies necessary. Here we show that high-mobility monolayer graphene constitutes an alternative material system, not affected by charging effects, for performing Fabry-Pérot QH interferometry in the integer QH regime. In devices equipped with gate-tunable quantum point contacts acting on the edge channels of the zeroth Landau level, we observe-in agreement with theory-high-visibility Aharonov-Bohm interference widely tunable through electrostatic gating or magnetic fields. A coherence length of 10 µm at a temperature of 0.02 K allows us to further achieve coherently coupled double Fabry-Pérot interferometry. In future, QH interferometry with graphene devices may enable investigations of anyonic excitations in fractional QH states.

8.
Science ; 367(6479): 781-786, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054761

RESUMO

The ground state of charge-neutral graphene under perpendicular magnetic field was predicted to be a quantum Hall topological insulator with a ferromagnetic order and spin-filtered, helical edge channels. In most experiments, however, an insulating state is observed that is accounted for by lattice-scale interactions that promote a broken-symmetry state with gapped bulk and edge excitations. We tuned the ground state of the graphene zeroth Landau level to the topological phase through a suitable screening of the Coulomb interaction with the high dielectric constant of a strontium titanate (SrTiO3) substrate. Robust helical edge transport emerged at magnetic fields as low as 1 tesla and withstanding temperatures up to 110 kelvin over micron-long distances. This versatile graphene platform may find applications in spintronics and topological quantum computation.

9.
Nat Phys ; 15(1): 48-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30613207

RESUMO

Strongly disordered superconductors in a magnetic field display many characteristic properties of type-II superconductivity-except at low temperatures, where an anomalous linear temperature dependence of the resistive critical field B c2 is routinely observed. This behavior violates the conventional theory of superconductivity, and its origin has posed a long-standing puzzle. Here we report systematic measurements of the critical magnetic field and current on amorphous indium oxide films with various levels of disorder. Surprisingly, our measurements show that the B c2 anomaly is accompanied by mean-field-like scaling of the critical current. Based on a comprehensive theoretical study we argue that these observations are a consequence of the vortex-glass ground state and its thermal fluctuations. Our theory further predicts that the linear-temperature anomaly occurs more generally in both films and disordered bulk superconductors, with a slope that depends on the normal-state sheet resistance, which we confirm experimentally.

10.
Nat Commun ; 8: 14983, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406152

RESUMO

Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.

11.
Nat Commun ; 2: 575, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22146394

RESUMO

Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi(2)Se(3) single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.


Assuntos
Bismuto/química , Eletrônica/métodos , Engenharia/métodos , Nanotecnologia/métodos , Selênio/química , Semicondutores , Cristalização , Eletrodos , Elétrons , Grafite/química , Campos Magnéticos , Nanoestruturas/química , Propriedades de Superfície
12.
Nat Commun ; 1: 140, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21266990

RESUMO

A superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T(c). It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T(c). Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T(c). Our study reveals that this pseudogap state is induced by superconducting fluctuations and favoured by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state and other contributions in the layered high-temperature superconductor compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA