Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BioTech (Basel) ; 11(2)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35822785

RESUMO

Several variants of SARS-CoV-2 have been identified in different parts of the world, including Gamma, detected in Brazil, Delta, detected in India, and the recent Omicron variant, detected in South Africa. The emergence of a new variant is a cause of great concern. This work considers an extended version of an SIRD model capable of incorporating the effects of vaccination, time-dependent transmissibility rates, mortality, and even potential reinfections during the pandemic. We use this model to characterise the Omicron wave in Brazil, South Africa, and Germany. During Omicron, the transmissibility increased by five for Brazil and Germany and eight for South Africa, whereas the estimated mortality was reduced by three-fold. We estimated that the reported cases accounted for less than 25% of the actual cases during Omicron. The mortality among the nonvaccinated population in these countries is, on average, three to four times higher than the mortality among the fully vaccinated. Finally, we could only reproduce the observed dynamics after introducing a new parameter that accounts for the percentage of the population that can be reinfected. Reinfection was as high as 40% in South Africa, which has only 29% of its population fully vaccinated and as low as 13% in Brazil, which has over 70% and 80% of its population fully vaccinated and with at least one dose, respectively. The calibrated models were able to estimate essential features of the complex virus and vaccination dynamics and stand as valuable tools for quantifying the impact of protocols and decisions in different populations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28636811

RESUMO

The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy.


Assuntos
Algoritmos , Eletrofisiologia Cardíaca/métodos , Gráficos por Computador , Animais , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Comput Math Methods Med ; 2012: 824569, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227109

RESUMO

Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to reproduce these phenomena the numerical models need to use subcellular discretization for the solution of the PDEs and nonuniform, heterogeneous tissue electric conductivity. Due to the high computational costs of simulations that reproduce the fine microstructure of cardiac tissue, previous studies have considered tissue experiments of small or moderate sizes and used simple cardiac cell models. In this paper, we develop a cardiac electrophysiology model that captures the microstructure of cardiac tissue by using a very fine spatial discretization (8 µm) and uses a very modern and complex cell model based on Markov chains for the characterization of ion channel's structure and dynamics. To cope with the computational challenges, the model was parallelized using a hybrid approach: cluster computing and GPGPUs (general-purpose computing on graphics processing units). Our parallel implementation of this model using a multi-GPU platform was able to reduce the execution times of the simulations from more than 6 days (on a single processor) to 21 minutes (on a small 8-node cluster equipped with 16 GPUs, i.e., 2 GPUs per node).


Assuntos
Eletrofisiologia Cardíaca/métodos , Gráficos por Computador , Algoritmos , Simulação por Computador , Condutividade Elétrica , Análise de Elementos Finitos , Junções Comunicantes/fisiologia , Coração/fisiologia , Humanos , Cadeias de Markov , Modelos Cardiovasculares , Modelos Teóricos , Miocárdio/metabolismo , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA