Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biophys J ; 122(11): 2053-2067, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36380590

RESUMO

Plasma membranes as well as their simplified model systems show an inherent nanoscale heterogeneity. As a result of strong interleaflet interactions, these nanoheterogeneities (called here lipid nanodomains) can be found in perfect registration (i.e., nanodomains in the inner leaflet are registered with the nanodomains in the outer leaflet). Alternatively, they might be interleaflet independent, antiregistered, or located asymmetrically in one bilayer leaflet only. To distinguish these scenarios from each other appears to be an experimental challenge. In this work, we analyzed the potential of Förster resonance energy transfer to characterize interleaflet organization of nanodomains. We generated in silico time-resolved fluorescence decays for a large set of virtual as well as real donor/acceptor pairs distributed over the bilayer containing registered, independent, antiregistered, or asymmetrically distributed nanodomains. In this way, we were able to identify conditions that gave satisfactory or unsatisfactory resolution. Overall, Förster resonance energy transfer appears as a robust method that, when using donor/acceptor pairs with good characteristics, yields otherwise difficult-to-reach characteristics of membrane lipid nanodomains.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Lipídeos de Membrana , Transferência Ressonante de Energia de Fluorescência/métodos , Membrana Celular/metabolismo , Membranas/metabolismo , Modelos Biológicos , Bicamadas Lipídicas/metabolismo
2.
Anal Chem ; 95(23): 8807-8815, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37148264

RESUMO

Several peripheral membrane proteins are known to form membrane pores through multimerization. In many cases, in biochemical reconstitution experiments, a complex distribution of oligomeric states has been observed that may, in part, be irrelevant to their physiological functions. This phenomenon makes it difficult to identify the functional oligomeric states of membrane lipid interacting proteins, for example, during the formation of transient membrane pores. Using fibroblast growth factor 2 (FGF2) as an example, we present a methodology applicable to giant lipid vesicles by which functional oligomers can be distinguished from nonspecifically aggregated proteins without functionality. Two distinct populations of fibroblast growth factor 2 were identified with (i) dimers to hexamers and (ii) a broad population of higher oligomeric states of membrane-associated FGF2 oligomers significantly distorting the original unfiltered histogram of all detectable oligomeric species of FGF2. The presented statistical approach is relevant for various techniques for characterizing membrane-dependent protein oligomerization.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Proteínas de Membrana , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Membranas , Lipídeos , Multimerização Proteica
3.
Langmuir ; 38(37): 11284-11295, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36083171

RESUMO

Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.


Assuntos
Peptídeos Penetradores de Células , Bicamadas Lipídicas , Adsorção , Arginina , Peptídeos Penetradores de Células/química , Lecitinas , Bicamadas Lipídicas/química , Concentração Osmolar , Fosfatidilcolinas/química , Fosforilcolina
4.
Biophys J ; 120(24): 5530-5543, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34798138

RESUMO

Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.


Assuntos
Gangliosídeo G(M1) , Gangliosídeos , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Oligossacarídeos
5.
Phys Chem Chem Phys ; 23(2): 1475-1488, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399594

RESUMO

A promising alternative to classical antibiotics are antimicrobial peptides and their synthetic mimics (smAMPs) that supposedly act directly on membranes. For a more successful design of smAMPs, we need to know how the type of interaction with the membrane determines the type of membrane perturbation. How this, in turn, transfers into selectivity and microbial killing activity is largely unknown. Here, we characterize the action of two smAMPs: MM:CO (a copolymer of hydrophobic cyclooctyl subunits and charged ß-monomethyl-α-aminomethyl subunits) and the highly charged poly-NM (a homopolymer of α-aminomethyl subunits). By thorough characterization of vesicle leakage experiments, we elucidate complex membrane perturbation behavior in zwitterionic or negatively charged vesicles. Vesicle leakage data does not entirely agree with the growth inhibition of microbes. Our ensemble of advanced membrane permeabilization approaches clarifies these discrepancies. Long cumulative leakage kinetics show that the two smAMPs act either by transient leakage or by rare stochastic leakage events that occur at charge neutralization in the sample. We determine the strengths of individual leakage events induced by the smAMPs in membranes of various compositions. These strengths indicate changes in leakage mechanism over time and concentration range. Thus, our sophisticated analysis of vesicle leakage experiments reveals a fine-tuned flexibility in membrane permeabilization mechanisms. These details are indispensable in judging and designing membrane-active compounds.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Lipossomas Unilamelares/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Fluoresceínas/química , Glicerofosfatos/química , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Eletricidade Estática , Lipossomas Unilamelares/química
6.
Proc Natl Acad Sci U S A ; 115(47): 11923-11928, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397112

RESUMO

Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Fusão de Membrana/fisiologia , Arginina/metabolismo , Arginina/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Cinética , Bicamadas Lipídicas/química , Fusão de Membrana/efeitos dos fármacos , Membranas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/fisiologia , Pseudópodes/metabolismo , Pseudópodes/fisiologia
7.
Anal Chem ; 92(22): 14861-14866, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33198473

RESUMO

In-membrane oligomerization is decisive for the function (or dysfunction) of many proteins. Techniques were developed to characterize membrane-inserted oligomers and the hereby obtained oligomerization states were intuitively related to the function of these proteins. However, in many cases, it is unclear whether the obtained oligomerization states are functionally relevant or are merely the consequence of nonspecific aggregation. Using fibroblast growth factor 2 (FGF2) as a model system, we addressed this methodological challenge. FGF2 oligomerizes in a PI(4,5)P2-dependent manner at the inner plasma membrane leaflet. This process results in membrane insertion and the formation of a lipidic membrane pore, the key intermediate in unconventional secretion of FGF2. To tackle the problem of discriminating functional oligomers from irrelevant aggregates, we present a statistical single molecule and single vesicle assay determining the brightness of individually diffusing in-membrane oligomers and correlating their oligomerization state with membrane pore formation. Importantly, time-dependent membrane pore formation was analyzed with an ensemble of single vesicles providing detailed statistics. Our findings demonstrate that quantifying oligomeric states alone does not allow for a deep understanding of the structure-function relationship of membrane-inserted oligomers.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Multimerização Proteica , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/metabolismo , Permeabilidade , Porosidade , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
8.
Chem Rev ; 118(23): 11259-11297, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362705

RESUMO

Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Nanoestruturas/química , Fluorescência
9.
Biophys J ; 112(10): 2147-2158, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538152

RESUMO

Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Cardiolipinas/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli , Corantes Fluorescentes , Humanos , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estresse Oxidativo/fisiologia , Fosfolipídeos/metabolismo , Temperatura , Lipossomas Unilamelares/química
10.
Biochim Biophys Acta ; 1858(6): 1288-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947183

RESUMO

Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface.


Assuntos
Membranas Mitocondriais/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Oxirredução , Permeabilidade , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Lipossomas Unilamelares
11.
Biochim Biophys Acta ; 1853(4): 850-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25101973

RESUMO

Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.


Assuntos
Membrana Celular/metabolismo , Gangliosídeo G(M1)/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Colesterol , Análise por Conglomerados , Simulação por Computador , Difusão , Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M1)/química , Hidrazinas/metabolismo , Ligantes , Método de Monte Carlo , Ovinos , Titulometria
12.
Angew Chem Int Ed Engl ; 55(32): 9411-5, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27295499

RESUMO

ß-Amyloid (Aß) oligomers are neurotoxic and implicated in Alzheimer's disease. Neuronal plasma membranes may mediate formation of Aß oligomers in vivo. Membrane components sphingomyelin and GM1 have been shown to promote aggregation of Aß; however, these studies were performed under extreme, non-physiological conditions. We demonstrate that physiological levels of GM1 , organized in nanodomains do not seed oligomerization of Aß40 monomers. We show that sphingomyelin triggers oligomerization of Aß40 and that GM1 is counteractive thus preventing oligomerization. We propose a molecular explanation that is supported by all-atom molecular dynamics simulations. The preventive role of GM1 in the oligomerization of Aß40 suggests that decreasing levels of GM1 in the brain, for example, due to aging, could reduce protection against Aß oligomerization and contribute to the onset of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Gangliosídeo G(M1)/farmacologia , Esfingomielinas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Gangliosídeo G(M1)/química , Simulação de Dinâmica Molecular , Esfingomielinas/química
13.
Biochim Biophys Acta ; 1838(7): 1769-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24565796

RESUMO

Biological membranes are under significant oxidative stress caused by reactive oxygen species mostly originating during cellular respiration. Double bonds of the unsaturated lipids are most prone to oxidation, which might lead to shortening of the oxidized chain and inserting of terminal either aldehyde or carboxylic group. Structural rearrangement of oxidized lipids, addressed already, is mainly associated with looping back of the hydrophilic terminal group. This contribution utilizing dual-focus fluorescence correlation spectroscopy and electron paramagnetic resonance as well as atomistic molecular dynamics simulations focuses on the overall changes of the membrane structural and dynamical properties once it becomes oxidized. Particularly, attention is paid to cholesterol rearrangement in the oxidized membrane revealing its preferable interaction with carbonyls of the oxidized chains. In this view cholesterol seems to have a tendency to repair, rather than condense, the bilayer.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Fosfolipídeos/química , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Oxirredução
14.
Biophys J ; 107(12): 2751-2760, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25517142

RESUMO

Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Cinética , Microscopia de Fluorescência/métodos
15.
Phys Chem Chem Phys ; 16(22): 10688-97, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756382

RESUMO

The environment-sensitive fluorescent probes provide excellent tools for studying membranes in their native state. We have modified the BODIPY-based fluorescent molecular rotor by increasing the number of alkyl moieties from one to two or three to achieve a more defined and deeper positioning of the probe in membranes. Detailed characterisation of fluorescence properties and localisation/orientation of probes was performed using a variety of fluorescence techniques and model membranes composed of different lipids. As expected, additional alkyls attached to the fluorophore moiety led to a deeper and more defined localisation of the probe in the lipid bilayer. The results strongly indicate that fluorescence properties of such probes are influenced not only by lipid packing but also by the orientation of the probe in membranes. The orientation of rotors studied herein was significantly altered by changes in the lipid composition of membranes. Our observations demonstrate the limits of BODIPY-based molecular rotors as environmental sensors in cellular membranes with complex lipid composition. The results presented herein also underline the importance of the detailed characterisation of fluorescent membrane dyes and provide a guide for future testing.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Corantes Fluorescentes/síntese química , Bicamadas Lipídicas/síntese química , Estrutura Molecular
16.
J Control Release ; 371: 85-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782063

RESUMO

Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.


Assuntos
Lipídeos , Lipossomos , Nanomedicina , Peixe-Zebra , Animais , Nanomedicina/métodos , Lipídeos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Doxorrubicina/análogos & derivados
17.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252473

RESUMO

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Assuntos
Espaço Extracelular , Fator 2 de Crescimento de Fibroblastos , Dimerização , ATPase Trocadora de Sódio-Potássio , Dissulfetos
18.
J Phys Chem Lett ; 14(25): 5791-5797, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37327454

RESUMO

Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.


Assuntos
Gangliosídeos , Esfingomielinas , Gangliosídeos/química , Glicoesfingolipídeos , Gangliosídeo G(M1) , Simulação de Dinâmica Molecular
19.
Biophys J ; 102(9): 2104-13, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22824274

RESUMO

Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.


Assuntos
Toxina da Cólera/química , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Modelos Químicos , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Conformação Molecular , Transição de Fase
20.
Int J Mol Sci ; 13(12): 16141-56, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23203189

RESUMO

The formation of membrane heterogeneities, e.g., lipid domains and pores, leads to a redistribution of donor (D) and acceptor (A) molecules according to their affinity to the structures formed and the remaining bilayer. If such changes sufficiently influence the Förster resonance energy transfer (FRET) efficiency, these changes can be further analyzed in terms of nanodomain/pore size. This paper is a continuation of previous work on this theme. In particular, it is demonstrated how FRET experiments should be planned and how data should be analyzed in order to achieve the best possible resolution. The limiting resolution of domains and pores are discussed simultaneously, in order to enable direct comparison. It appears that choice of suitable donor/acceptor pairs is the most crucial step in the design of experiments. For instance, it is recommended to use DA pairs, which exhibit an increased affinity to pores (i.e., partition coefficients K(D,A) > 10) for the determination of pore sizes with radii comparable to the Förster radius R(0). On the other hand, donors and acceptors exhibiting a high affinity to different phases are better suited for the determination of domain sizes. The experimental setup where donors and acceptors are excluded from the domains/pores should be avoided.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/farmacocinética , Canais Iônicos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Corantes Fluorescentes/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Teóricos , Método de Monte Carlo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA