Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 31(5): 1171-1184, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872321

RESUMO

Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis (Arabidopsis thaliana), the nitrate transceptor CHLORINA1/NITRATE TRANSPORTER1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE2 (PHO2) as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other's transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum), opening biotechnological perspectives in crop plants.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Oryza/genética , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Transdução de Sinais , Triticum/genética , Proteínas de Transporte de Ânions/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Oryza/fisiologia , Fósforo/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/fisiologia
2.
PLoS Genet ; 14(4): e1007304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608565

RESUMO

Zinc is an essential micronutrient for all living organisms and is involved in a plethora of processes including growth and development, and immunity. However, it is unknown if there is a common genetic and molecular basis underlying multiple facets of zinc function. Here we used natural variation in Arabidopsis thaliana to study the role of zinc in regulating growth. We identify allelic variation of the systemic immunity gene AZI1 as a key for determining root growth responses to low zinc conditions. We further demonstrate that this gene is important for modulating primary root length depending on the zinc and defence status. Finally, we show that the interaction of the immunity signal azelaic acid and zinc level to regulate root growth is conserved in rice. This work demonstrates that there is a common genetic and molecular basis for multiple zinc dependent processes and that nutrient cues can determine the balance of growth and immune responses in plants.


Assuntos
Alelos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Variação Genética , Raízes de Plantas/crescimento & desenvolvimento , Zinco/deficiência , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais
3.
Front Plant Sci ; 7: 396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092147

RESUMO

Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA