Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 21(10): 587, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32792667

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Rev Neurosci ; 21(8): 433-444, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601397

RESUMO

Globally, 50 million people live with dementia, with Alzheimer disease (AD) being responsible for two-thirds of the total cases. As ageing is the main risk factor for dementia-related neurodegeneration, changes in the timing or nature of the cellular hallmarks of normal ageing might be key to understanding the events that convert normal ageing into neurodegeneration. Cellular senescence is a candidate mechanism that might be important for this conversion. Under persistent stress, as occurs in ageing, both postmitotic cells - including neurons - and proliferative cells - such as astrocytes and microglia, among others - can engender a state of chronic cellular senescence that is characterized by the secretion of pro-inflammatory molecules that promote the functional decline of tissues and organs. Ablation of senescent cells has been postulated as a promising therapeutic venue to target the ageing phenotype and, thus, prevent or mitigate ageing-related diseases. However, owing to a lack of evidence, it is not possible to label cellular senescence as a cause or a consequence of neurodegeneration. This Review examines cellular senescence in the context of ageing and AD, and discusses which of the processes - cellular senescence or AD - might come first.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Senescência Celular/fisiologia , Envelhecimento/patologia , Animais , Humanos
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074870

RESUMO

Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early- and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.


Assuntos
Predisposição Genética para Doença/genética , Miastenia Gravis/genética , Polimorfismo Genético/genética , Transdução de Sinais/genética , Adulto , Feminino , Expressão Gênica/genética , Frequência do Gene/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Músculo Esquelético/patologia , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética
5.
Mov Disord ; 34(4): 460-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30675927

RESUMO

BACKGROUND: PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. OBJECTIVES: To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. METHODS: Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. RESULTS: The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. CONCLUSIONS: We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Endocitose/fisiologia , Doença de Parkinson/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco
6.
Biochim Biophys Acta ; 1862(1): 20-31, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26435084

RESUMO

We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade.


Assuntos
Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Proteína bcl-X/metabolismo , Acetilação , Linhagem Celular Tumoral , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Doença de Parkinson/metabolismo , Tubulina (Proteína)/metabolismo
7.
Biochim Biophys Acta ; 1852(7): 1400-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779081

RESUMO

We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS.


Assuntos
Etanol/farmacologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial , Mitofagia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Linhagem Celular , Dinaminas/metabolismo , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Brain Commun ; 6(1): fcad346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38162907

RESUMO

Lewy body dementia is the second most common neurodegenerative dementia after Alzheimer's disease. Disease-modifying therapies for this disabling neuropsychiatric condition are critically needed. To identify drugs associated with the risk of developing Lewy body dementia, we performed a population-based case-control study of 148 170 US Medicare participants diagnosed with Lewy body dementia between 1 January 2008 and 31 December 2014 and of 1 253 043 frequency-matched controls. We estimated odds ratios and 95% confidence intervals for the association of Lewy body dementia risk with 1017 prescription drugs overall and separately for the three major racial groups (Black, Hispanic and White Americans). We identified significantly reduced Lewy body dementia risk associated with drugs used to treat cardiovascular diseases (anti-hypertensives: odds ratio = 0.72, 95% confidence interval = 0.70-0.74, P-value = 0; cholesterol-lowering agents: odds ratio = 0.85, 95% confidence interval = 0.83-0.87, P-value = 0; anti-diabetics: odds ratio = 0.83, 95% confidence interval = 0.62-0.72, P-value = 0). Notably, anti-diabetic medications were associated with a larger risk reduction among Black Lewy body dementia patients compared with other racial groups (Black: odds ratio = 0.67, 95% confidence interval = 0.62-0.72, P-value = 0; Hispanic: odds ratio = 0.86, 95% = 0.80-0.92, P-value = 5.16 × 10-5; White: odds ratio = 0.85, 95% confidence interval = 0.82-0.88, P-value = 0). To independently confirm the epidemiological findings, we looked for evidence of genetic overlap between Lewy body dementia and cardiovascular traits using whole-genome sequence data generated for 2591 Lewy body dementia patients and 4027 controls. Bivariate mixed modelling identified shared genetic risk between Lewy body dementia and low-density lipoprotein cholesterol levels, Type 2 diabetes and hypertension. By combining epidemiological and genomic data, we demonstrated that drugs treating cardiovascular diseases are associated with reduced Lewy body dementia risk, and these associations varied across racial groups. Future randomized clinical trials need to confirm our findings, but our data suggest that assiduous management of cardiovascular diseases may be beneficial in this understudied form of dementia.

10.
Commun Biol ; 7(1): 35, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182665

RESUMO

Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.


Assuntos
Doença por Corpos de Lewy , Idoso , Humanos , Doença por Corpos de Lewy/genética , Corpos de Lewy/genética , Cerebelo , Metilação de DNA , Epigenoma
11.
Neuron ; 112(13): 2142-2156.e5, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701790

RESUMO

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Atrofia de Múltiplos Sistemas , Atrofia de Múltiplos Sistemas/genética , Humanos , Predisposição Genética para Doença/genética , Feminino , Masculino , Idoso , Locos de Características Quantitativas/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
13.
medRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38168192

RESUMO

Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. Here, we present a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in three population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). Genome-wide association analysis identified nine independent risk loci, of which eight had been previously reported, and one was a novel risk locus (LMX1B, rs35196838, OR = 1.14, 95% CI = 1.09-1.19, p-value = 2.2 × 10-9). A genome-wide, gene-based common variant analysis identified GLO1 as an additional risk gene (p-value = 8.45 × 10-7). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p-value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p-value = 4.0 × 10-4). Our study expands the understanding of the genetic architecture of RLS and highlights the contributions of common variants to this prevalent neurological disorder.

15.
Neurol Genet ; 9(4): e200079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37293291

RESUMO

Background and Objectives: Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores. Methods: Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication. Results: Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04-1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10-6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04-1.23). Discussion: ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.

17.
Cell Rep ; 39(1): 110598, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385738

RESUMO

Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Transporte Axonal/genética , Mutação com Ganho de Função , Humanos , Cinesinas/genética , Mutação/genética
18.
Acta Neuropathol Commun ; 9(1): 75, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892821

RESUMO

Age at onset of amyotrophic lateral sclerosis (ALS) is highly variable (eg, 27-74 years in carriers of the G4C2-expansion in C9orf72). It might be influenced by environmental and genetic factors via the modulation of DNA methylation (DNAm) at CpG-sites. Hence, we combined an epigenetic and genetic approach to test the hypothesis that some common single nucleotide polymorphisms (SNPs) at CpG-sites (CpG-SNPs) could modify ALS age of onset. Our genome-wide DNAm analysis suggested three CpG-SNPs whose DNAm levels are significantly associated with age of onset in 249 ALS patients (q < 0.05). Next, genetic analysis validated the association of rs4970944 with age of onset in the discovery (n = 469; P = 0.025) and replication (n = 4160; P = 0.007) ALS cohorts. A meta-analysis of the cohorts combined showed that the median onset in AA-carriers is two years later than in GG-carriers (n = 4629; P = 0.0012). A similar association was observed with its tagging SNPs, implicating a 16 Kb region at the 1q21.3 locus as a modifier of ALS age of onset. Notably, rs4970944 genotypes are also associated with age of onset in C9orf72-carriers (n = 333; P = 0.025), suggesting that each A-allele delays onset by 1.6 years. Analysis of Genotype-Tissue Expression data revealed that the protective A-allele is linked with the reduced expression of CTSS in cerebellum (P = 0.00018), which is a critical brain region in the distributed neural circuits subserving motor control. CTSS encodes cathepsin S protein playing a key role in antigen presentation. In conclusion, we identified a 16 Kb locus tagged by rs4970944 as a modifier of ALS age of onset. Our findings support the role of antigen presenting processes in modulating age of onset of ALS and suggest potential drug targets (eg, CTSS). Future replication studies are encouraged to validate the link between the locus tagged by rs4970944 and age of onset in independent ALS cohorts, including different ethnic groups.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Epigênese Genética/genética , Epigenômica/métodos , Idade de Início , Idoso , Estudos de Coortes , Feminino , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
19.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523907

RESUMO

Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
20.
Nat Genet ; 53(3): 294-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589841

RESUMO

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.


Assuntos
Estudo de Associação Genômica Ampla , Doença por Corpos de Lewy/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Glucosilceramidase/genética , Humanos , Proteínas Nucleares/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA