RESUMO
Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.
Assuntos
Cardiomiopatias , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Cardiomiopatias/metabolismoRESUMO
RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.
Assuntos
Cardiomegalia Induzida por Exercícios , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , TranscriptomaRESUMO
Background: The diagnosis of arrhythmogenic cardiomyopathy (ACM) is challenging especially in children at risk of adverse events. Analysis of cardiac myocyte junctional protein distribution may have diagnostic and prognostic implications, but its utility is limited by the need for a myocardial sample. We previously reported that buccal mucosa cells show junctional protein redistribution similar to that seen in cardiac myocytes of adult patients with ACM. Objectives: We aimed to determine when junctional protein distribution abnormalities first occur in children with ACM variants and whether they correlate with progression of clinically apparent disease. Methods: We analyzed buccal mucosa samples of children and adolescents with a family history of ACM (nâ¯=â¯13) and age-matched controls (nâ¯=â¯13). Samples were immunostained for plakoglobin, desmoplakin, plakophilin-1 and connexin43 and analyzed by confocal microscopy. All participants were swabbed at least twice with an average interval of 12-18â¯months between samplings. Results: Junctional protein re-localization in buccal mucosa cells did not correlate with the presence of ACM-causing variants but instead occurred with clinical onset of disease. No changes in protein distribution were seen unless and until there was clinical evidence of disease. In addition, progressive shifts in the distribution of key proteins correlated with worsening of the disease phenotype. Finally, we observed restoration of junctional signal for Cx43 in patient with a favorable response to anti-arrhythmic therapy. Conclusions: Due to ethical concerns about obtaining heart biopsies in children with no apparent disease, it has not been possible to analyze molecular changes in cardiac myocytes with the onset/progression of clinical disease. Using buccal smears as a surrogate for the myocardium may facilitate future studies of mechanisms and pathophysiological consequences of junctional protein redistribution in ACM. Buccal cells may also be a safe and inexpensive tool for risk stratification and potentially monitoring response to treatment in children bearing ACM variants.
RESUMO
BACKGROUND: Inflammation is a prominent feature of arrhythmogenic cardiomyopathy (ACM), but whether it contributes to the disease phenotype is not known. METHODS: To define the role of inflammation in the pathogenesis of ACM, we characterized nuclear factor-κB signaling in ACM models in vitro and in vivo and in cardiac myocytes from patient induced pluripotent stem cells. RESULTS: Activation of nuclear factor-κB signaling, indicated by increased expression and nuclear accumulation of phospho-RelA/p65, occurred in both an in vitro model of ACM (expression of JUP2157del2 in neonatal rat ventricular myocytes) and a robust murine model of ACM (homozygous knock-in of mutant desmoglein-2 [Dsg2mut/mut]) that recapitulates the cardiac manifestations seen in patients with ACM. Bay 11-7082, a small-molecule inhibitor of nuclear factor-κB signaling, prevented the development of ACM disease features in vitro (abnormal redistribution of intercalated disk proteins, myocyte apoptosis, release of inflammatory cytokines) and in vivo (myocardial necrosis and fibrosis, left ventricular contractile dysfunction, electrocardiographic abnormalities). Hearts of Dsg2mut/mut mice expressed markedly increased levels of inflammatory cytokines and chemotactic molecules that were attenuated by Bay 11-7082. Salutary effects of Bay 11-7082 correlated with the extent to which production of selected cytokines had been blocked. Nuclear factor-κB signaling was also activated in cardiac myocytes derived from a patient with ACM. These cells produced and secreted abundant inflammatory cytokines under basal conditions, and this was also greatly reduced by Bay 11-7082. CONCLUSIONS: Inflammatory signaling is activated in ACM and drives key features of the disease. Targeting inflammatory pathways may be an effective new mechanism-based therapy for ACM.
Assuntos
Arritmias Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Animais , Arritmias Cardíacas/patologia , Cardiomiopatias/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos Transgênicos , Ratos Wistar , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologiaRESUMO
UNLABELLED: Treatment for chronic hepatitis C virus (HCV) infection is evolving from interferon (IFN)-based therapy to direct-acting antiviral (DAA) agents, yet some safety concerns have arisen involving cardiac toxicity. In this study, we sought to better understand the potential off-target toxicities of new DAAs. We retrospectively evaluated the clinical and pathological findings of the sentinel case in a phase II study that led to clinical development discontinuation for BMS-986094, an HCV nucleotide polymerase (nonstructural 5B) inhibitor. We also report on outcomes from other patients in the same study, including electrocardiogram changes, cardiovascular biomarkers, and transthoracic echocardiograms. Thirty-four patients received IFN-free BMS-986094 regimens. Six patients had left ventricular ejection fractions (LVEFs) <30%, 8 had LVEFs 30%-50%, and 11 required hospitalization for suspected cardiotoxicity. Of the patients with LVEF <50%, 6 had normalization of systolic function after a median of 20 days. T-wave inversions were the most sensitive predictor of LVEF dysfunction. B-type natriuretic peptide levels increased over time and correlated with the degree of LVEF dysfunction. Pathological analysis of cardiac tissue revealed severe myocyte damage with elongated myofibrils without gross necrosis. These findings were consistent with some results of recent primate studies that were conducted to further investigate the potential mechanisms of BMS-986094 toxicity. CONCLUSION: A novel nucleotide analog polymerase inhibitor developed for HCV treatment may cause a toxic cardiomyopathy. Ongoing surveillance of DAAs for cardiotoxicities may be beneficial, especially among patients at higher risk for cardiovascular disease.
Assuntos
Antivirais/efeitos adversos , Cardiomiopatias/induzido quimicamente , Guanosina Monofosfato/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Inibidores de Proteases/efeitos adversos , Adulto , Idoso , Antivirais/uso terapêutico , Cardiomiopatias/fisiopatologia , Estudos de Coortes , Feminino , Seguimentos , Guanosina Monofosfato/efeitos adversos , Guanosina Monofosfato/uso terapêutico , Hepatite C Crônica/diagnóstico , Humanos , Interferon-alfa/efeitos adversos , Interferon-alfa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteases/uso terapêutico , Estudos Retrospectivos , Medição de RiscoAssuntos
Autopsia/métodos , Pesquisa Biomédica/métodos , Cardiologia/métodos , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/patologia , Autopsia/história , Pesquisa Biomédica/história , Cardiologia/história , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Dissecação , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Pinturas , FenótipoRESUMO
RATIONALE: Spatial heterogeneity in connexin (Cx) expression has been implicated in arrhythmogenesis. OBJECTIVE: This study was performed to quantify the relation between the degree of heterogeneity in Cx43 expression and disturbances in electric propagation. METHODS AND RESULTS: Cell pairs and strands composed of mixtures of Cx43(-/-) (Cx43KO) or GFP-expressing Cx43(+/+) (WT(GFP)) murine ventricular myocytes were patterned using microlithographic techniques. At the interface between pairs of WT(GFP) and Cx43KO cells, dual-voltage clamp showed a marked decrease in electric coupling (approximately 5% of WT) and voltage gating suggested the presence of mixed Cx43/Cx45 channels. Cx43 and Cx45 immunofluorescence signals were not detectable at this interface, probably because of markedly reduced gap junction size. Macroscopic propagation velocity, measured by multisite high-resolution optical mapping of transmembrane potential in strands of cells of mixed Cx43 genotype, decreased with an increasing proportion of Cx43KO cells in the strand. A marked decrease in conduction velocity was observed in strands composed of <50% WT cells. Propagation at the microscopic scale showed a high degree of dissociation between WT(GFP) and Cx43KO cells, but consistent excitation without development of propagation block. CONCLUSIONS: Heterogeneous ablation of Cx43 leads to a marked decrease in propagation velocity in tissue strands composed of <50% cells with WT Cx43 expression and marked dissociation of excitation at the cellular level. However, the small residual electric conductance between Cx43 and WT(GFP) myocytes assures excitation of Cx43(-/-) cells. This explains the previously reported undisturbed contractility in tissues with spatially heterogeneous downregulation of Cx43 expression.
Assuntos
Comunicação Celular , Conexina 43/metabolismo , Acoplamento Excitação-Contração , Ventrículos do Coração/metabolismo , Junções Intercelulares/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Conexina 43/genética , Fibronectinas/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Patch-Clamp , Fatores de Tempo , Imagens com Corantes Sensíveis à VoltagemRESUMO
Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disorder characterized by the early appearance of ventricular arrhythmias often out of proportion to the degree of ventricular remodeling and dysfunction. ACM typically presents in adolescence or early adulthood. It accounts for 10% of sudden cardiac deaths in individuals under the age of 18 years. Although there has been significant progress in recognizing the genetic determinants of ACM, how specific gene mutations cause the disease remains poorly understood. Here, we review insights gained from studying the human disease as well as in vivo and in vitro experimental models. These observations have advanced our understanding of the molecular mechanisms underlying the pathogenesis of ACM and may lead to development of new mechanism-based therapies.
RESUMO
Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.
Assuntos
Desmogleína 2 , Modelos Animais de Doenças , Macrófagos , NF-kappa B , Receptores CCR2 , Transdução de Sinais , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/imunologia , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologiaRESUMO
Previous studies have implicated persistent innate immune signaling in the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a familial non-ischemic heart muscle disease characterized by life-threatening arrhythmias and progressive myocardial injury. Here, we provide new evidence implicating inflammatory lipid autocoids in ACM. We show that specialized pro-resolving lipid mediators are reduced in hearts of Dsg2mut/mut mice, a well characterized mouse model of ACM. We also found that ACM disease features can be reversed in rat ventricular myocytes expressing mutant JUP by the pro-resolving epoxy fatty acid (EpFA) 14,15-eicosatrienoic acid (14-15-EET), whereas 14,15-EE-5(Z)E which antagonizes actions of the putative 14,15-EET receptor, intensified nuclear accumulation of the desmosomal protein plakoglobin. Soluble epoxide hydrolase (sEH), an enzyme that rapidly converts pro-resolving EpFAs into polar, far less active or even pro-inflammatory diols, is highly expressed in cardiac myocytes in Dsg2mut/mut mice. Inhibition of sEH prevented progression of myocardial injury in Dsg2mut/mut mice and led to recovery of contractile function. This was associated with reduced myocardial expression of genes involved in the innate immune response and fewer pro-inflammatory macrophages expressing CCR2, which mediate myocardial injury in Dsg2mut/mut mice. These results suggest that pro-inflammatory eicosanoids contribute to the pathogenesis of ACM and, further, that inhibition of sEH may be an effective, mechanism-based therapy for ACM patients.
RESUMO
BACKGROUND: An estimated 10% to 15% of sudden infant death syndrome (SIDS) cases may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases, including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death. METHODS AND RESULTS: GJA1 open reading frame mutational analysis was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole-cell patch-clamp studies were performed to determine the functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white boy and a 3-month-old white girl, respectively. Analysis of the E42K victim's parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in >1000 ethnically matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation, and S272P demonstrated wild-type junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss of function not rescued by wild type. Moreover, the E42K victim's cardiac tissue demonstrated a mosaic immunostaining pattern for connexin43 protein. CONCLUSIONS: This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-connexin43 demonstrated a trafficking-independent reduction in junctional coupling in vitro and a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of connexin43-associated sudden death.
Assuntos
Conexina 43/genética , Junções Comunicantes/patologia , Junções Comunicantes/fisiologia , Mutação de Sentido Incorreto , Morte Súbita do Lactente/genética , Morte Súbita do Lactente/patologia , Adulto , Animais , Caderinas/metabolismo , Estudos de Coortes , Conexina 43/metabolismo , Desmoplaquinas/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Masculino , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Transporte Proteico/genética , RatosRESUMO
OBJECTIVE: Cathepsin K and tartrate-resistant acid phosphatase (TRAP) are two proteins expressed in osteoclastic giant cells. Recently we showed that lesional multinucleated giant cells (MNGs) in pulmonary granulomatosis with polyangiitis expressed these proteins. We aimed to clarify whether the expression of these two proteins has any specificity or is a general feature of MNGs associated with multiple types of granulomatous inflammation. METHODS: In total, 7 Crohn's disease (CD), 5 GCA, 5 giant cell myocarditis (GCM), 11 sarcoidosis and 6 tuberculosis cases were examined for expression of cathepsin K and TRAP using immunohistochemistry (IHC). Protein expression was semi-quantitatively classified as none, weak, moderate or strong. In addition, tissue TRAP activity was examined using an enzymatic reaction. RESULTS: The expression of cathepsin K was robust in >95% of MNGs of all examined disease groups, whereas TRAP expression varied; CD, GCA and tuberculosis showed strong TRAP expression. TRAP expression in sarcoidosis and GCM was weaker (CD vs GCM, P = 0.04; CD vs sarcoidosis, P = 0.06). Compared with IHC, TRAP detection using an enzymatic colour reaction had limited sensitivity. CONCLUSION: Expression of TRAP and cathepsin K is a general feature of MNGs and their expression might be related to histopathological pattern.
Assuntos
Fosfatase Ácida/metabolismo , Catepsina K/metabolismo , Células Gigantes/enzimologia , Isoenzimas/metabolismo , Osteoclastos/enzimologia , Biomarcadores/análise , Células Cultivadas , Doença de Crohn/enzimologia , Doença de Crohn/patologia , Células Gigantes/metabolismo , Humanos , Imuno-Histoquímica , Miocardite/enzimologia , Miocardite/patologia , Osteoclastos/metabolismo , Inclusão em Parafina , Sarcoidose/enzimologia , Sarcoidose/patologia , Sensibilidade e Especificidade , Estatísticas não Paramétricas , Fosfatase Ácida Resistente a Tartarato , Tuberculose/enzimologia , Tuberculose/patologiaRESUMO
AIMS: Anecdotal observations suggest that sub-clinical electrophysiological manifestations of arrhythmogenic right ventricular cardiomyopathy (ARVC) develop before detectable structural changes ensue on cardiac imaging. To test this hypothesis, we investigated a murine model with conditional cardiac genetic deletion of one desmoplakin allele (DSP ±) and compared the findings to patients with non-diagnostic features of ARVC who carried mutations in desmoplakin. METHODS AND RESULTS: Murine: the DSP (±) mice underwent electrophysiological, echocardiographic, and immunohistochemical studies. They had normal echocardiograms but delayed conduction and inducible ventricular tachycardia associated with mislocalization and reduced intercalated disc expression of Cx43. Sodium current density and myocardial histology were normal at 2 months of age. Human: ten patients with heterozygous mutations in DSP without overt structural heart disease (DSP+) and 12 controls with supraventricular tachycardia were studied by high-density electrophysiological mapping of the right ventricle. Using a standard S(1)-S(2) protocol, restitution curves of local conduction and repolarization parameters were constructed. Significantly greater mean increases in delay were identified particularly in the outflow tract vs. controls (P< 0.01) coupled with more uniform wavefront progression. The odds of a segment with a maximal activation-repolarization interval restitution slope >1 was 99% higher (95% CI: 13%; 351%, P = 0.017) in DSP+ vs. controls. Immunostaining revealed Cx43 mislocalization and variable Na channel distribution. CONCLUSION: Desmoplakin disease causes connexin mislocalization in the mouse and man preceding any overt histological abnormalities resulting in significant alterations in conduction-repolarization kinetics prior to morphological changes detectable on conventional cardiac imaging. Haploinsufficiency of desmoplakin is sufficient to cause significant Cx43 mislocalization. Changes in sodium current density and histological abnormalities may contribute to a worsening phenotype or disease but are not necessary to generate an arrhythmogenic substrate. This has important implications for the earlier diagnosis of ARVC and risk stratification.
Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Desmoplaquinas/genética , Mutação/genética , Adulto , Idoso , Animais , Estudos de Casos e Controles , Desmoplaquinas/deficiência , Eletrocardiografia , Feminino , Deleção de Genes , Sistema de Condução Cardíaco/fisiologia , Heterozigoto , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/fisiologia , Adulto JovemRESUMO
Introduction: A reliable and automated method to segment and classify carotid artery atherosclerotic plaque components is needed to efficiently analyze multi-weighted magnetic resonance (MR) images to allow their integration into patient risk assessment for ischemic stroke. Certain plaque components such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater likelihood of plaque rupture and stroke event. Assessment for presence and extent of LRNC could assist in directing treatment with impact upon patient outcomes. Methods: To address the need to accurately determine the presence and extent of plaque components on carotid plaque MRI, we proposed a two-staged deep-learning-based approach that consists of a convolutional neural network (CNN), followed by a Bayesian neural network (BNN). The rationale for the two-stage network approach is to account for the class imbalance of vessel wall and background by providing an attention mask to the BNN. A unique feature of the network training was to use ground truth defined by both high-resolution ex vivo MRI data and histopathology. More specifically, standard resolution 1.5 T in vivo MR image sets with corresponding high resolution 3.0 T ex vivo MR image sets and histopathology image sets were used to define ground-truth segmentations. Of these, data from 7 patients was used for training and from the remaining two was used for testing the proposed method. Next, to evaluate the generalizability of the method, we tested the method with an additional standard resolution 3.0 T in vivo data set of 23 patients obtained from a different scanner. Results: Our results show that the proposed method yielded accurate segmentation of carotid atherosclerotic plaque and outperforms not only manual segmentation by trained readers, who did not have access to the ex vivo or histopathology data, but also three state-of-the-art deep-learning-based segmentation methods. Further, the proposed approach outperformed a strategy where the ground truth was generated without access to the high resolution ex vivo MRI and histopathology. The accurate performance of this method was also observed in the additional 23-patient dataset from a different scanner. Conclusion: In conclusion, the proposed method provides a mechanism to perform accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI. Further, our study shows the advantages of using high-resolution imaging and histology to define ground truth for training deep-learning-based segmentation methods.
RESUMO
Inhibition of nuclear factor kappa-B (NFκB) signaling prevents disease in Dsg2 mut/mut mice, a model of arrhythmogenic cardiomyopathy (ACM). Moreover, NFκB is activated in ACM patient-derived iPSC-cardiac myocytes under basal conditions in vitro . Here, we used genetic approaches and sequencing studies to define the relative pathogenic roles of immune signaling in cardiac myocytes vs. inflammatory cells in Dsg2 mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2 mut/mut mice. It does this by mobilizing cells expressing C-C motif chemokine receptor-2 (CCR2+ cells) to the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2 mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA sequencing and cellular indexing of transcriptomes and epitomes (CITE-seq) studies revealed marked pro-inflammatory changes in gene expression and the cellular landscape in hearts of Dsg2 mut/mut mice involving cardiac myocytes, fibroblasts and CCR2+ cells. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2 mut/mut mice were modulated by actions of CCR2+ cells. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM. BRIEF SUMMARY: We have uncovered a therapeutically targetable innate immune mechanism regulating myocardial injury and cardiac function in a clinically relevant mouse model of Arrhythmogenic Cardiomyopathy (ACM).
RESUMO
Objectives: We sought to determine if persistent innate immune signaling via NFκB occurs in cardiac myocytes in patients with arrhythmogenic cardiomyopathy and if this is associated with myocardial infiltration of pro-inflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NFκB signaling. Background: NFκB signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy by mobilizing CCR2-expressing macrophages which promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with arrhythmogenic cardiomyopathy. Methods: We analyzed myocardium from arrhythmogenic cardiomyopathy patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NFκB signaling. We also counted myocardial CCR2-expressing cells. Results: NFκB signaling was seen in cardiac myocytes in 34 of 36 cases of arrhythmogenic cardiomyopathy but in none of 19 age-matched controls. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NFκB signaling. NFκB signaling also occurred in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active arrhythmogenic cardiomyopathy exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells reflecting an inflammatory process that fails to resolve. Such individuals may benefit from anti-inflammatory therapy. CONDENSED ABSTRACT: NFκB signaling in cardiac myocytes causes arrhythmias and myocardial injury in a mouse model of arrhythmogenic cardiomyopathy by mobilizing pro-inflammatory CCR2-expressing macrophages to the heart. Based on these new mechanistic insights, we analyzed hearts of arrhythmogenic cardiomyopathy patients who died suddenly or required cardiac transplantation. We observed active NFκB signaling in cardiac myocytes associated with marked infiltration of CCR2-expressing cells. We also observed NFκB signaling in buccal mucosa cells obtained from young subjects with active disease. Thus, anti-inflammatory therapy may be effective in arrhythmogenic cardiomyopathy. Screening buccal cells may be a reliable way to identify patients most likely to benefit. HIGHLIGHTS: Inflammation likely contributes to the pathogenesis of arrhythmogenic cardiomyopathy but the responsible mechanisms and the roles of specific classes of immune cells remain undefined.NFκB signaling in cardiac myocytes is sufficient to cause disease in a mouse model of arrhythmogenic cardiomyopathy by mobilizing injurious myeloid cells expressing CCR2 to the heart.Here, we provide evidence of persistent NFκB signaling in cardiac myocytes and increased CCR2-expressing cells in hearts of patients with arrhythmogenic cardiomyopathy. We observed a close correlation between the number of cardiac myocytes with active NFκB signaling and the number of CCR2-expressing cells in patient hearts.We also provide evidence of active NFκB signaling in buccal mucosa cells associated with initial onset of disease and/or disease progression in young subjects with arrhythmogenic cardiomyopathy alleles.
RESUMO
Background: Nuclear factor κB (NF-κB) signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy (ACM) by mobilizing CCR2-expressing macrophages that promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with ACM. Objectives: We sought to determine if persistent innate immune signaling via NF-κB occurs in cardiac myocytes in patients with ACM and if this is associated with myocardial infiltration of proinflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NF-κB signaling. Methods: We analyzed myocardium from ACM patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NF-κB signaling. We also counted myocardial CCR2-expressing cells. Results: RelA/p65 signal was seen in numerous cardiac myocyte nuclei in 34 of 36 cases of ACM but not in 19 age-matched control individuals. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NF-κB signaling. NF-κB signaling was observed in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active ACM exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells, reflecting a local and systemic inflammatory process. Such individuals may benefit from anti-inflammatory therapy.
RESUMO
BACKGROUND: Imaging evaluation of arrhythmogenic right ventricular cardiomyopathy (ARVC) remains challenging. Myocardial strain assessment by echocardiography is an increasingly utilized technique for detecting subclinical left ventricular (LV) and right ventricular (RV) dysfunction. We aimed to evaluate the diagnostic and prognostic utility of LV and RV strain in ARVC. METHODS: Patients with suspected ARVC (n = 109) from a multicenter registry were clinically phenotyped using the 2010 ARVC Revised Task Force Criteria and underwent baseline strain echocardiography. Diagnostic performance of LV and RV strain was evaluated using the area under the receiver operating characteristic curve analysis against the 2010 ARVC Revised Task Force Criteria, and the prognostic value was assessed using the Kaplan-Meier analysis. RESULTS: Mean age was 45.3±14.7 years, and 48% of patients were female. Estimation of RV strain was feasible in 99/109 (91%), and LV strain was feasible in 85/109 (78%) patients. ARVC prevalence by 2010 ARVC Revised Task Force Criteria is 91/109 (83%) and 83/99 (84%) in those with RV strain measurements. RV global longitudinal strain and RV free wall strain had diagnostic area under the receiver operating characteristic curve of 0.76 and 0.77, respectively (both P<0.001; difference NS). Abnormal RV global longitudinal strain phenotype (RV global longitudinal strain > -17.9%) and RV free wall strain phenotype (RV free wall strain > -21.2%) were identified in 41/69 (59%) and 56/69 (81%) of subjects, respectively, who were not identified by conventional echocardiographic criteria but still met the overall 2010 ARVC Revised Task Force Criteria for ARVC. LV global longitudinal strain did not add diagnostic value but was prognostic for composite end points of death, heart transplantation, or ventricular arrhythmia (log-rank P=0.04). CONCLUSIONS: In a prospective, multicenter registry of ARVC, RV strain assessment added diagnostic value to current echocardiographic criteria by identifying patients who are missed by current echocardiographic criteria yet still fulfill the diagnosis of ARVC. LV strain, by contrast, did not add incremental diagnostic value but was prognostic for identification of high-risk patients.