Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Biol Chem ; 298(6): 101958, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452679

RESUMO

Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Camundongos , Fosfatidilcolinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo
2.
Exp Eye Res ; 234: 109598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479076

RESUMO

Sodium iodate (NaIO3) induces retinal pigment epithelium (RPE) dysfunction, which leads to photoreceptor degeneration. Previously, we used electron microscopy to show that the administration of NaIO3 resulted in the accumulation of cell debris in the subretinal space, which was thought to be caused by failed phagocytosis in the outer segment of the photoreceptor due to RPE dysfunction. We further analyzed the pathological changes in the retina and choroid of NaIO3-injected mice, and found that the expression of OTX2, an RPE marker, disappeared from central part of the RPE 1 day after NaIO3 administration. Furthermore, fenestrated capillaries (choriocapillaris, CC) adjacent to the RPE could not be identified only 2 days after NaIO3 administration. An examination of the expression of the CC-specific protein plasmalemma vesicle-associated protein (PLVAP), in sections and flat-mount retina/choroid specimens showed destruction of the CC, and complete disappearance of the PLVAP signal 7 days after NaIO3 administration. In contrast, CD31 flat-mount immunohistochemistry of the retina indicated no difference in retinal vessels between NaIO3-treated mice and controls. Electron microscopy showed that the fenestrated capillaries in the kidney and duodenum were morphologically indistinguishable between control and NaIO3-treated mice. We examined cytokine production in the retina and RPE, and found that the Vegfa transcript level in the RPE decreased starting 1 day after NaIO3 administration. Taken together, these observations show that NaIO3 reduces the CC in the early stages of the pathology, which is accompanied by a rapid decrease in Vegfa expression in the RPE.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regulação para Baixo , Degeneração Retiniana/metabolismo , Iodatos/toxicidade , Corioide/metabolismo , Atrofia/metabolismo
3.
Cell ; 132(5): 771-82, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18329364

RESUMO

Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.


Assuntos
Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Membrana Nuclear/metabolismo , Anáfase , Animais , Blastômeros/metabolismo , Cruzamentos Genéticos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Telófase
4.
J Biol Chem ; 296: 100303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465374

RESUMO

Membrane phospholipids play pivotal roles in various cellular processes, and their levels are tightly regulated. In the retina, phospholipids had been scrutinized because of their distinct composition and requirement in visual transduction. However, how lipid composition changes during retinal development remains unclear. Here, we used liquid chromatography-mass spectrometry (LC-MS) to assess the dynamic changes in the levels of two main glycerophospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the developing mouse retina under physiological and pathological conditions. The total levels of PC and PE increased during retinal development, and individual lipid species exhibited distinct level changes. The amount of very-long-chain PC and PE increased dramatically in the late stages of retinal development. The mRNA levels of Elovl2 and Elovl4, genes encoding enzymes essential for the synthesis of very-long-chain polyunsaturated fatty acids, increased in developing photoreceptors. Cell sorting based on CD73 expression followed by LC-MS revealed distinct changes in PC and PE levels in CD73-positive rod photoreceptors and CD73-negative retinal cells. Finally, using the NaIO3-induced photoreceptor degeneration model, we identified photoreceptor-specific changes in PC and PE levels from 1 day after NaIO3 administration, before the outer segment of photoreceptors displayed morphological impairment. In conclusion, our findings provide insight into the dynamic changes in PC and PE levels in the developing and adult mouse retina under physiological and pathological conditions. Furthermore, we provide evidence that cell sorting followed by LC-MS is a promising approach for investigating the relevance of lipid homeostasis in the function of different retinal cell types.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Lipídeos de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Cromatografia Líquida , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Citometria de Fluxo , Iodatos/administração & dosagem , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Organogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/citologia
5.
Mol Cell ; 52(6): 794-804, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24268578

RESUMO

Autophagy is a cellular self-catabolic process wherein organelles, macromolecules, and invading microbes are sequestered in autophagosomes that fuse with lysosomes. In this study, we uncover the role of nitric oxide (NO) as a signaling molecule for autophagy induction via its downstream mediator, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP). We found that 8-nitro-cGMP-induced autophagy is mediated by Lys63-linked polyubiquitination and that endogenous 8-nitro-cGMP promotes autophagic exclusion of invading group A Streptococcus (GAS) from cells. 8-nitro-cGMP can modify Cys residues by S-guanylation of proteins. We showed that intracellular GAS is modified with S-guanylation extensively in autophagosomes-like vacuoles, suggesting the role of S-guanylation as a marker for selective autophagic degradation. This finding is supported by the fact that S-guanylated bacteria were selectively marked with polyubiquitin, a known molecular tag for selective transport to autophagosomes. These results collectively indicate that 8-nitro-cGMP plays a crucial role in cytoprotection during bacterial infections or inflammations via autophagy upregulation.


Assuntos
Autofagia , GMP Cíclico/análogos & derivados , Imunidade Inata , Macrófagos/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Proteína 5 Relacionada à Autofagia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Células HeLa , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Poliubiquitina/metabolismo , Transporte Proteico , Transdução de Sinais , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Fatores de Tempo , Transfecção , Ubiquitinação
6.
Biochem Biophys Res Commun ; 523(1): 214-219, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31848047

RESUMO

Neuromuscular junctions (NMJs) are cholinergic synapses characterized by ultrastructural specializations, including the presynaptic active zones, the acetylcholine (ACh) release sites of the motor nerve terminal, and the postsynaptic junctional folds of muscle membrane, where ACh receptors (AChRs) cluster for efficient neuromuscular transmission. The formation and maintenance of NMJs are governed by the muscle-specific receptor tyrosine kinase MuSK. We had previously demonstrated that the muscle cytoplasmic protein Dok-7 is an essential activator of MuSK, and its activation and NMJ formation are enhanced in the Dok-7 transgenic (Tg) mice, in which Dok-7 is specifically overexpressed in skeletal muscle. Although Dok-7 Tg mice develop abnormally large NMJs but show normal motor function, the forced expression of Dok-7 in the muscle improves impaired motor activity in mouse models of neuromuscular disorders with NMJ defects. However, the effect of Dok-7 overexpression in skeletal muscle on ultrastructure and neuromuscular transmission of NMJs is yet to be studied. Here, we investigated the structural and electrophysiological properties of NMJs in the diaphragm muscle of 8-week-old Dok-7 Tg mice. The areas of the presynaptic motor nerve terminals and postsynaptic muscle membrane of NMJs were 2.7 and 4.3 times greater in Dok-7 Tg mice than in WT mice, respectively. Electrophysiological analyses revealed that neuromuscular transmission via NMJs in Dok-7 Tg mice was significantly enhanced but not proportionally with the increased size of the synaptic contact. Consistent with this, the densities of active zones and synaptic vesicles (ACh carriers) in the presynaptic motor nerve terminals were reduced. In addition, the density and size of postsynaptic junctional folds in the muscle membrane were also reduced. Moreover, terminal Schwann cells exhibited significantly greater penetration of their processes into the synaptic clefts, which connect the pre- and post-synaptic specializations. Together, our findings demonstrate that transgenic overexpression of Dok-7 in the skeletal muscle enhances neuromuscular transmission with significant enlargement and ultrastructural alterations of NMJs, the latter of which might prevent toxic overactivation of AChRs at the abnormally enlarged NMJs.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Junção Neuromuscular/química
7.
Biochem Biophys Res Commun ; 512(4): 927-933, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929925

RESUMO

Mammals possess four Sall transcription factors that play various roles in organogenesis. Previously, we found that Sall1 is expressed in microglia in the central nervous system, and it plays pivotal roles in microglia maturation. In the eye, Sall1 was also expressed in the developing lens, and we examined its role in lens development. A knock-in mouse harboring the EGFP gene in the Sall1 locus (Sall1-gfp) was used to analyze the Sall1 expression pattern. In Sall1-gfp/wild, EGFP was expressed throughout the presumptive lens at E11.5, and subsequently the expression in the lens epithelium became weaker. After birth, signals were observed in the equator region. The effects of Sall1 knockout on lens development were examined in Sall1-gfp/gfp. Lens sections revealed small vacuole-like holes and gaps in the center of the lens fibers at E14.5. Subsequently, the vacuoles appeared in most regions of the fiber cells. Electron microscopic analysis indicated that the vacuoles were between the fiber cells, leading to huge gaps. In addition, contact between the lens epithelium and apical end of the fiber cell was disrupted, and there were gaps between the adjoining lens epithelial cells. However, gap junction structure was observed by electron microscopic analysis, and immunostaining of Zo1 showed rather appropriate expression pattern. Immunohistochemistry indicated that the major lens transcription factors Prox1 and Pax6 were expressed in relatively normal patterns. However, although the expression of Prox1 and Pax6 decreased in nuclei in the control lens, it remained in Sall1-gfp/gfp. In addition, lower expression level of c-Maf protein was observed. Therefore, Sall1 is strongly expressed in the lens from the early developmental stage and plays an essential role in the maintenance of fiber cell and lens epithelium adhesion.


Assuntos
Cristalino/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Cristalino/patologia , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Vacúolos/patologia
8.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321324

RESUMO

Influenza A and B viruses have eight-segmented, single-stranded, negative-sense RNA genomes, whereas influenza C and D viruses have seven-segmented genomes. Each genomic RNA segment exists in the form of a ribonucleoprotein complex (RNP) in association with nucleoproteins and an RNA-dependent RNA polymerase in virions. Influenza D virus was recently isolated from swine and cattle, but its morphology is not fully studied. Here, we examined the morphological characteristics of D/bovine/Yamagata/10710/2016 (D/Yamagata) and C/Ann Arbor/50 (C/AA), focusing on RNPs packaged within the virions. By scanning transmission electron microscopic tomography, we found that more than 70% of D/Yamagata and C/AA virions packaged eight RNPs arranged in the "1+7" pattern as observed in influenza A and B viruses, even though type C and D virus genomes are segmented into only seven segments. These results imply that influenza viruses generally package eight RNPs arranged in the "1+7" pattern regardless of the number of RNA segments in their genome.IMPORTANCE The genomes of influenza A and B viruses are segmented into eight segments of negative-sense RNA, and those of influenza C and D viruses are segmented into seven segments. For progeny virions to be infectious, each virion needs to package all of their genomic segments. Several studies support the conclusion that influenza A and B viruses selectively package eight distinct genomic RNA segments; however, the packaging of influenza C and D viruses, which possess seven segmented genomes, is less understood. By using electron microscopy, we showed that influenza C and D viruses package eight RNA segments just as influenza A and B viruses do. These results suggest that influenza viruses prefer to package eight RNA segments within virions independent of the number of genome segments.


Assuntos
Gammainfluenzavirus/fisiologia , Thogotovirus/fisiologia , Montagem de Vírus/fisiologia , Animais , Cães , Vírus da Influenza A/fisiologia , Vírus da Influenza A/ultraestrutura , Vírus da Influenza B/fisiologia , Vírus da Influenza B/ultraestrutura , Gammainfluenzavirus/ultraestrutura , Células Madin Darby de Rim Canino , Thogotovirus/ultraestrutura
10.
J Biol Chem ; 292(29): 12054-12064, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578316

RESUMO

Docosahexaenoic acid (DHA) has essential roles in photoreceptor cells in the retina and is therefore crucial to healthy vision. Although the influence of dietary DHA on visual acuity is well known and the retina has an abundance of DHA-containing phospholipids (PL-DHA), the mechanisms associated with DHA's effects on visual function are unknown. We previously identified lysophosphatidic acid acyltransferase 3 (LPAAT3) as a PL-DHA biosynthetic enzyme. Here, using comprehensive phospholipid analyses and imaging mass spectroscopy, we found that LPAAT3 is expressed in the inner segment of photoreceptor cells and that PL-DHA disappears from the outer segment in the LPAAT3-knock-out mice. Dynamic light-scattering analysis of liposomes and molecular dynamics simulations revealed that the physical characteristics of DHA reduced membrane-bending rigidity. Following loss of PL-DHA, LPAAT3-knock-out mice exhibited abnormalities in the retinal layers, such as incomplete elongation of the outer segment and decreased thickness of the outer nuclear layers and impaired visual function, as well as disordered disc morphology in photoreceptor cells. Our results indicate that PL-DHA contributes to visual function by maintaining the disc shape in photoreceptor cells and that this is a function of DHA in the retina. This study thus provides the reason why DHA is required for visual acuity and may help inform approaches for overcoming retinal disorders associated with DHA deficiency or dysfunction.


Assuntos
Aciltransferases/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transtornos da Visão/metabolismo , Aciltransferases/genética , Animais , Biomarcadores/metabolismo , Cruzamentos Genéticos , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/química , Eletrorretinografia , Lipossomos , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Imagem Multimodal , Imagem Óptica , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Fenômenos Físicos , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Transtornos da Visão/patologia
11.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28679756

RESUMO

VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Nucleocapsídeo/metabolismo , Montagem de Vírus , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Técnicas de Inativação de Genes
12.
Exp Eye Res ; 171: 142-154, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559301

RESUMO

During development of the retina, common retinal progenitor cells give rise to six classes of neurons that subsequently further diversify into more than 55 subtypes of neuronal subtypes. Here, we have investigated the expression and function of Fezf2, Fez zinc finger family of protein, in the developing mouse retina. Expression of Fezf2 transcripts was strongly observed in the embryonic retinal progenitors at E14.5 and declined quickly in subsequent development of retina. Then, in postnatal stage at around day 8, Fezf2 was transiently expressed then declined again. Loss-of-function analysis using retinas from mice in which Fezf2 coding region was substituted with ß-galactosidase showed that Fezf2 is expressed in a subset of cone OFF bipolar cells and required for their differentiation. Using electroretinogram, we found that Fezf2 knockout retina exhibited significantly reduced photopic b-wave, suggesting functional abnormality of cone ON bipolar cells. Furthermore, reduced expression of synaptic protein Trpm1 and structural alteration of ON bipolar cell invagination, both of which affected cone photoreceptor terminal synaptic activity, was identified by transmission electron microscopy and immunohistochemistry, respectively. Taken together, our results show that Fezf2 is indispensable in differentiation of bipolar precursors into cone OFF bipolar cells and in functional maturation of cone ON bipolar cells during development of mouse retina. These results contribute to our understanding of how diversity of neuronal subtypes and hence specificity of neuronal connections are established in the retina by intrinsic cues.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Retina/embriologia , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Biomarcadores/metabolismo , Eletrorretinografia , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real , Retina/crescimento & desenvolvimento , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Análise de Sequência de RNA , Canais de Cátion TRPM/metabolismo
13.
Microbiol Immunol ; 62(4): 221-228, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446491

RESUMO

Helicobacter pylori (H. pylori), a gram-negative microaerophilic bacterial pathogen that colonizes the stomachs of more than half of all humans, is linked to chronic gastritis, peptic ulcers and gastric cancer. Spiral-shaped H. pylori undergo morphologic conversion to a viable but not culturable coccoid form when they transit from the microaerobic stomach into the anaerobic intestinal tract. However, little is known about the morphological and pathogenic characteristics of H. pylori under prolonged anaerobic conditions. In this study, scanning electron microscopy was used to document anaerobiosis-induced morphological changes of H. pylori, from helical to coccoid to a newly defined fragmented form. Western blot analysis indicated that all three forms express certain pathogenic proteins, including the bacterial cytotoxin-associated gene A (CagA), components of the cag-Type IV secretion system (TFSS), the blood group antigen-binding adhesin BabA, and UreA (an apoenzyme of urease), almost equally. Similar urease activities were also detected in all three forms of H. pylori. However, in contrast to the helical form, bacterial motility and TFSS activity were found to have been abrogated in the anaerobiosis-induced coccoid and fragmented forms of H. pylori. Notably, it was demonstrated that some of the anaerobiosis-induced fragmented state cells could be converted to proliferation-competent helical bacteria in vitro. These results indicate that prolonged exposure to the anaerobic intestine may not eliminate the potential for H. pylori to revert to the helical pathogenic state.


Assuntos
Proteínas de Bactérias/genética , Helicobacter pylori/citologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Anaerobiose , Antibacterianos , Antígenos de Bactérias/genética , Linhagem Celular , Proliferação de Células , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/microbiologia , Humanos , Microscopia Eletrônica de Varredura , Sistemas de Secreção Tipo IV/genética , Urease/genética , Fatores de Virulência/genética
14.
J Virol ; 90(1): 457-73, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491159

RESUMO

UNLABELLED: Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) play important roles in viral replication and pathogenicity. To investigate type-specific differences between HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with all the same viral gene products except for their Us3 kinases, we constructed and characterized a recombinant HSV-1 in which its Us3 gene was replaced with the HSV-2 Us3 gene. Replacement of HSV-1 Us3 with HSV-2 Us3 had no apparent effect on viral growth in cell cultures or on the range of proteins phosphorylated by Us3. HSV-2 Us3 efficiently compensated for HSV-1 Us3 functions, including blocking apoptosis, controlling infected cell morphology, and downregulating cell surface expression of viral envelope glycoprotein B. In contrast, replacement of HSV-1 Us3 by HSV-2 Us3 changed the phosphorylation status of UL31 and UL34, which are critical viral regulators of nuclear egress. It also caused aberrant localization of these viral proteins and aberrant accumulation of primary enveloped virions in membranous vesicle structures adjacent to the nuclear membrane, and it reduced viral cell-cell spread in cell cultures and pathogenesis in mice. These results clearly demonstrated biological differences between HSV-1 Us3 and HSV-2 Us3, especially in regulation of viral nuclear egress and phosphorylation of viral regulators critical for this process. Our study also suggested that the regulatory role(s) of HSV-1 Us3, which was not carried out by HSV-2 Us3, was important for HSV-1 cell-cell spread and pathogenesis in vivo. IMPORTANCE: A previous study comparing the phenotypes of HSV-1 and HSV-2 suggested that the HSV-2 Us3 kinase lacked some of the functions of HSV-1 Us3 kinase. The difference between HSV-1 and HSV-2 Us3 kinases appeared to be due to the fact that some Us3 phosphorylation sites in HSV-1 proteins are not conserved in the corresponding HSV-2 proteins. Therefore, we generated recombinant HSV-1 strains YK781 (Us3-chimera) with HSV-2 Us3 and its repaired virus YK783 (Us3-repair) with HSV-1 Us3, to compare the activities of HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with the same HSV-1 gene products except for their Us3 kinases. We report here that some processes in viral nuclear egress and pathogenesis in vivo that have been attributed to HSV-1 Us3 could not be carried out by HSV-2 Us3. Therefore, our study clarified the biological differences between HSV-1 Us3 and HSV-2 Us3, which may be relevant to viral pathogenesis in vivo.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Proteínas Serina-Treonina Quinases/genética , Recombinação Genética , Proteínas Virais/genética , Liberação de Vírus , Replicação Viral , Animais , Apoptose , Transporte Biológico , Linhagem Celular , Membrana Celular/virologia , Núcleo Celular/virologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Teste de Complementação Genética , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos ICR , Proteínas Nucleares/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo
15.
J Virol ; 89(15): 7799-812, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995262

RESUMO

UNLABELLED: Herpesviruses have evolved a unique mechanism for nucleocytoplasmic transport of nascent nucleocapsids: the nucleocapsids bud through the inner nuclear membrane (INM; primary envelopment), and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Little is known about the molecular mechanism of herpesviral de-envelopment. We show here that the knockdown of both CD98 heavy chain (CD98hc) and its binding partner ß1 integrin induced membranous structures containing enveloped herpes simplex virus 1 (HSV-1) virions that are invaginations of the INM into the nucleoplasm and induced aberrant accumulation of enveloped virions in the perinuclear space and in the invagination structures. These effects were similar to those of the previously reported mutation(s) in HSV-1 proteins gB, gH, UL31, and/or Us3, which were shown here to form a complex(es) with CD98hc in HSV-1-infected cells. These results suggested that cellular proteins CD98hc and ß1 integrin synergistically or independently regulated HSV-1 de-envelopment, probably by interacting directly and/or indirectly with these HSV-1 proteins. IMPORTANCE: Certain cellular and viral macromolecular complexes, such as Drosophila large ribonucleoprotein complexes and herpesvirus nucleocapsids, utilize a unique vesicle-mediated nucleocytoplasmic transport: the complexes acquire primary envelopes by budding through the inner nuclear membrane into the space between the inner and outer nuclear membranes (primary envelopment), and the enveloped complexes then fuse with the outer nuclear membrane to release de-enveloped complexes into the cytoplasm (de-envelopment). However, there is a lack of information on the molecular mechanism of de-envelopment fusion. We report here that HSV-1 recruited cellular fusion regulatory proteins CD98hc and ß1 integrin to the nuclear membrane for viral de-envelopment fusion. This is the first report of cellular proteins required for efficient de-envelopment of macromolecular complexes during their nuclear egress.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Integrina beta1/metabolismo , Membrana Nuclear/virologia , Desenvelopamento do Vírus , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Integrina beta1/genética , Membrana Nuclear/metabolismo , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Biochem Biophys Res Commun ; 463(3): 292-6, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26003732

RESUMO

Osteomodulin (OMD) is a member of the small leucine-rich repeat proteoglycan family, which is involved in the organization of the extracellular matrix. OMD is located in bone tissue and is reportedly important for bone mineralization. However, the details of OMD function in bone formation are poorly understood. Using the baculovirus expression system, we produced recombinant human OMD and analyzed its interaction with type I collagen, which is abundant in bone. In this result, OMD directly interacted with purified immobilized collagen and OMD suppressed collagen fibril formation in a turbidity assay. Morphological analysis of collagen in the presence or absence of OMD demonstrated that OMD reduces the diameter and changes the shape of collagen fibrils. We conclude that OMD regulates the extracellular matrix during bone formation.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestrutura , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo
17.
J Virol ; 88(9): 4657-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522907

RESUMO

UNLABELLED: Herpesviruses have evolved a unique mechanism for nuclear egress of nascent progeny nucleocapsids: the nucleocapsids bud through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes (primary envelopment), and enveloped nucleocapsids then fuse with the outer nuclear membrane to release nucleocapsids into the cytoplasm (de-envelopment). We have shown that the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (or VP13/VP14) is a novel regulator for HSV-1 nuclear egress. In particular, we demonstrated the following: (i) UL47 formed a complex(es) with HSV-1 proteins UL34, UL31, and/or Us3, which have all been reported to be critical for viral nuclear egress, and these viral proteins colocalized at the nuclear membrane in HSV-1-infected cells; (ii) the UL47-null mutation considerably reduced primary enveloped virions in the perinuclear space although capsids accumulated in the nucleus; and (iii) UL47 was detected in primary enveloped virions in the perinuclear space by immunoelectron microscopy. These results suggested that UL47 promoted HSV-1 primary envelopment, probably by interacting with the critical HSV-1 regulators for viral nuclear egress and by modulating their functions. IMPORTANCE: Like other herpesviruses, herpes simplex virus 1 (HSV-1) has evolved a vesicle-mediated nucleocytoplasmic transport mechanism for nuclear egress of nascent progeny nucleocapsids. Although previous reports identified and characterized several HSV-1 and cellular proteins involved in viral nuclear egress, complete details of HSV-1 nuclear egress remain to be elucidated. In this study, we have presented data suggesting (i) that the major HSV-1 virion structural protein UL47 (or VP13/VP14) formed a complex with known viral regulatory proteins critical for viral nuclear egress and (ii) that UL47 played a regulatory role in HSV-1 primary envelopment. Thus, we identified UL47 as a novel regulator for HSV-1 nuclear egress.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Ligação Proteica , Coelhos
18.
J Virol ; 87(23): 12879-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067952

RESUMO

The influenza A virus possesses an eight-segmented, negative-sense, single-stranded RNA genome (vRNA). Each vRNA segment binds to multiple copies of viral nucleoproteins and a small number of heterotrimeric polymerase complexes to form a rod-like ribonucleoprotein complex (RNP), which is essential for the transcription and replication of the vRNAs. However, how the RNPs are organized within the progeny virion is not fully understood. Here, by focusing on polymerase complexes, we analyzed the fine structure of purified RNPs and their configuration within virions by using various electron microscopies (EM). We confirmed that the individual RNPs possess a single polymerase complex at one end of the rod-like structure and that, as determined using immune EM, some RNPs are incorporated into budding virions with their polymerase-binding ends at the budding tip, whereas others align with their polymerase-binding ends at the bottom of the virion. These data further our understanding of influenza virus virion morphogenesis.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Animais , Embrião de Galinha , RNA Polimerases Dirigidas por DNA/genética , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Influenza Humana/virologia , Microscopia Eletrônica , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas Virais/química , Proteínas Virais/genética , Vírion/química , Vírion/genética , Vírion/ultraestrutura
19.
Cereb Cortex ; 23(8): 1824-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22705452

RESUMO

Polypyrimidine tract-binding protein (PTB) is a well-characterized RNA-binding protein and known to be preferentially expressed in neural stem cells (NSCs) in the central nervous system; however, its role in NSCs in the developing brain remains unclear. To explore the role of PTB in embryonic NSCs in vivo, Nestin-Cre-mediated conditional Ptb knockout mice were generated for this study. In the mutant forebrain, despite the depletion of PTB protein, neither abnormal neurogenesis nor flagrant morphological abnormalities were observed at embryonic day 14.5 (E14.5). Nevertheless, by 10 weeks, nearly all mutant mice succumbed to hydrocephalus (HC), which was caused by a lack of the ependymal cell layer in the dorsal cortex. Upon further analysis, a gradual loss of adherens junctions (AJs) was observed in the ventricular zone (VZ) of the dorsal telencephalon in the mutant brains, beginning at E14.5. In the AJs-deficient VZ, impaired interkinetic nuclear migration and precocious differentiation of NSCs were observed after E14.5. These findings demonstrated that PTB depletion in the dorsal telencephalon is causally involved in the development of HC and that PTB is important for the maintenance of AJs in the NSCs of the dorsal telencephalon.


Assuntos
Junções Aderentes/ultraestrutura , Hidrocefalia/etiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Telencéfalo/embriologia , Animais , Hidrocefalia/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/ultraestrutura , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Telencéfalo/anormalidades
20.
Plant Cell Rep ; 33(1): 75-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24085308

RESUMO

KEY MESSAGE: RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2. A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB) overexpression system. Recently, an advanced version of MucoRice-CTB was developed (MucoRice-CTB-RNAi) through the use of RNAi to suppress the production of the endogenous storage proteins 13-kDa prolamin and glutelin, so as to increase CTB expression. The level of the α-amylase/trypsin inhibitor-like protein RAG2 (a major rice allergen) was reduced in MucoRice-CTB-RNAi seeds in comparison with wild-type (WT) rice. To investigate whether RNAi-mediated suppression of storage proteins affects the localization of overexpressed CTB and major rice allergens, we generated an RNAi line without CTB (MucoRice-RNAi) and investigated gene expression, and protein production and localization of two storage proteins, CTB, and five major allergens in MucoRice-CTB, MucoRice-CTB-RNAi, MucoRice-RNAi, and WT rice. In all lines, glyoxalase I was detected in the cytoplasm, and 52- and 63-kDa globulin-like proteins were found in the aleurone particles. In WT, RAG2 and 19-kDa globulin were localized mainly in protein bodies II (PB-II) of the endosperm cells. Knockdown of glutelin A led to a partial destruction of PB-II and was accompanied by RAG2 relocation to the plasma membrane/cell wall and cytoplasm. In MucoRice-CTB, CTB was localized in the cytoplasm and PB-II. In MucoRice-CTB-RNAi, CTB was produced at a level six times that in MucoRice-CTB and was localized, similar to RAG2, in the plasma membrane/cell wall and cytoplasm. Our findings indicate that the relocation of CTB in MucoRice-CTB-RNAi may contribute to down-regulation of RAG2.


Assuntos
Alérgenos/metabolismo , Toxina da Cólera/metabolismo , Oryza/metabolismo , Interferência de RNA , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Alérgenos/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Glutens/metabolismo , Oryza/genética , Oryza/ultraestrutura , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Sementes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA