Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 38(4): 30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25916233

RESUMO

With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions.

2.
J Chem Phys ; 131(12): 124508, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791895

RESUMO

Experimental investigations on thermodiffusion have been conducted for five different ternary mixtures of methane, n-butane, and n-dodecane at a high temperature and pressure. While the mole fraction of methane was fixed at 0.2 the mole fraction of n-dodecane was varied from 0.7 to 0.2. The experiments were performed in a microgravity environment on board the satellite FOTON-M3. It was found that in all mixtures, n-dodecane separated to the cold side whereas methane segregated to the hot side. n-butane, the species with an intermediate density, showed a change in sign as its mole fraction was increased. At low concentrations it collected on the cold side but moved in the opposite direction with an increase in its mole fraction. The role of the relative density coupled with the species concentrations has been used to explain the thermodiffusion factor in each mixture. Computational investigations showed a similar behavior. However, the theoretical model was not able to capture the sign change of n-butane accurately. The inadequate representation of the significance of the relative densities and the mole fraction of the species has been found as the reason for this.

3.
Med Eng Phys ; 29(1): 125-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16581284

RESUMO

The effect of reaming velocity on the pressure distribution within the bone was investigated numerically by solving the full three-dimensional momentum equations together with the continuity equation using the finite element technique. Viscosity was also varied to obtain a pressure envelope. It was found that all the experimental data follow the same trends as the envelopes predicted by the finite element model. It was clear that an increase in either the implant insertion rate or the viscosity resulted in an increase in pressure in the intramedullary canal.


Assuntos
Fêmur/fisiologia , Fêmur/cirurgia , Fixação Intramedular de Fraturas/instrumentação , Fixação Intramedular de Fraturas/métodos , Modelos Biológicos , Implantação de Prótese/métodos , Reologia/métodos , Simulação por Computador , Elasticidade , Humanos , Pressão , Estresse Mecânico , Viscosidade
4.
Phys Med Biol ; 61(4): 1405-15, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26807785

RESUMO

Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient's condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.


Assuntos
Sangue/efeitos da radiação , Modelos Teóricos , Refratometria/métodos , Humanos , Luz
6.
Rev Sci Instrum ; 82(12): 126105, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225260

RESUMO

A thermodiffusion cell is developed for performing Soret experiments on binary mixtures at high pressure and in the presence of a porous medium. The cell is validated by performing experiments at atmospheric pressure. The experiments are performed by applying different temperature gradients to binary mixtures in order to determine their thermal contrast factor. These measurements provide a first demonstration of the good reproducibility of this kind of measurements upon calibration.

7.
Eur Phys J E Soft Matter ; 15(3): 241-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15592763

RESUMO

In multicomponent mixtures, a much richer variety of phenomena can occur than in simple (single-component) fluids. Natural convection in single-component fluids is due to buoyancy forces caused by temperature gradients. In multicomponent mixtures, buoyancy forces may also be caused by concentration gradients. Because natural convection, molecular diffusion, and thermal conduction have different relaxation time scales, a wide variety of resulting convective motions and heat and mass distributions might occur. In some fluid mixtures such as water-ethanol system, for instance, ethanol diffuses much more slowly than heat, and because of this difference in time scales oscillatory convection might occur. In a multicomponent mixture, the total molar flux consists of two parts: the convective molar flux and the diffusive molar flux (resulting from the difference between the component velocity and the bulk velocity). The diffusion molar flux of a component depends, not only on its own mole fraction gradient (Fickian diffusion), but also on the gradient of all the components present in the mixture (cross-molecular diffusion). The diffusion flux depends also on the pressure gradient (pressure diffusion; the so-called gravitational effect) and temperature gradient (thermal diffusion; the so-called Soret effect). Firoozabadi's thermal diffusion model was applied to calculate the Soret coefficient, as well as the thermal diffusion coefficient and molecular diffusion coefficient for methanol-water and ethanol-water mixtures at 310.65 K temperature and 1 bar pressure with 10% water mass fraction. The results were compared with experimental data (J.K. Platten, in Proceedings of the 5th International Meeting on Thermodiffusion (IMT5), Lyngby, Aug. 2002, Philos. Mag. 83, Nos. 17-18 (2003)), as well as theoretical predictions with other models. A better agreement with the experimental data using the Firoozabadi model was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA