Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 575(7784): 679-682, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723262

RESUMO

Caspase-8 is a protease with both pro-death and pro-survival functions: it mediates apoptosis induced by death receptors such as TNFR11, and suppresses necroptosis mediated by the kinase RIPK3 and the pseudokinase MLKL2-4. Mice that lack caspase-8 display MLKL-dependent embryonic lethality4, as do mice that express catalytically inactive CASP8(C362A)5. Casp8C362A/C362AMlkl-/- mice die during the perinatal period5, whereas Casp8-/-Mlkl-/- mice are viable4, which indicates that inactive caspase-8 also has a pro-death scaffolding function. Here we show that mutant CASP8(C362A) induces the formation of ASC (also known as PYCARD) specks, and caspase-1-dependent cleavage of GSDMD and caspases 3 and 7 in MLKL-deficient mouse intestines around embryonic day 18. Caspase-1 and its adaptor ASC contributed to the perinatal lethal phenotype because a number of Casp8C362A/C362AMlkl-/-Casp1-/- and Casp8C362A/C362AMlkl-/-Asc-/- mice survived beyond weaning. Transfection studies suggest that inactive caspase-8 adopts a distinct conformation to active caspase-8, enabling its prodomain to engage ASC. Upregulation of the lipopolysaccharide sensor caspase-11 in the intestines of both Casp8C362A/C362AMlkl-/- and Casp8C362A/C362AMlkl-/-Casp1-/- mice also contributed to lethality because Casp8C362A/C362AMlkl-/-Casp1-/-Casp11-/- (Casp11 is also known as Casp4) neonates survived more often than Casp8C362A/C362AMlkl-/-Casp1-/- neonates. Finally, Casp8C362A/C362ARipk3-/-Casp1-/-Casp11-/- mice survived longer than Casp8C362A/C362AMlkl-/-Casp1-/-Casp11-/- mice, indicating that a necroptosis-independent function of RIPK3 also contributes to lethality. Thus, unanticipated plasticity in death pathways is revealed when caspase-8-dependent apoptosis and MLKL-dependent necroptosis are inhibited.


Assuntos
Caspase 8/metabolismo , Morte Celular/genética , Mucosa Intestinal/citologia , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 8/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mucosa Intestinal/enzimologia , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Eukaryot Cell ; 6(12): 2354-64, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17766466

RESUMO

Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle.


Assuntos
Flagelos/metabolismo , Regulação da Expressão Gênica , Interfase , Cinesinas/fisiologia , Microtúbulos/metabolismo , Mitose , Animais , Giardia lamblia , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia
3.
J Cell Sci ; 119(Pt 23): 4889-900, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17105767

RESUMO

In the binucleate parasite Giardia intestinalis, two diploid nuclei and essential cytoskeletal structures including eight flagella are duplicated and partitioned into two daughter cells during cell division. The mechanisms of mitosis and cytokinesis in the binucleate parasite Giardia are poorly resolved, yet have important implications for the maintenance of genetic heterozygosity. To articulate the mechanism of mitosis and the plane of cell division, we used three-dimensional deconvolution microscopy of each stage of mitosis to monitor the spatial relationships of conserved cytological markers to the mitotic spindles, the centromeres and the spindle poles. Using both light- and transmission electron microscopy, we determined that Giardia has a semi-open mitosis with two extranuclear spindles that access chromatin through polar openings in the nuclear membranes. In prophase, the nuclei migrate to the cell midline, followed by lateral chromosome segregation in anaphase. Taxol treatment results in lagging chromosomes and half-spindles. Our analysis supports a nuclear migration model of mitosis with lateral chromosome segregation in the left-right axis and cytokinesis along the longitudinal plane (perpendicular to the spindles), ensuring that each daughter inherits one copy of each parental nucleus with mirror image symmetry. Fluorescence in situ hybridization (FISH) to an episomal plasmid confirms that the nuclei remain separate and are inherited with mirror image symmetry.


Assuntos
Citocinese , Giardia lamblia/ultraestrutura , Imageamento Tridimensional/métodos , Mitose , Animais , Células Cultivadas , Segregação de Cromossomos , Flagelos/genética , Giardia lamblia/genética , Microtúbulos/metabolismo , Modelos Biológicos , Plasmídeos/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA