Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 10711-10722, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512217

RESUMO

Developing innovative platinum-based electrocatalysts and enhancing their efficiency are crucial for advancing high-performance fuel cell technology. In this study, we employed DFT calculations to provide a theoretical basis for interpreting the impact of graphene coatings on various Pt surfaces on oxygen reduction reaction (ORR) catalytic activity, which are currently applied as protective layers in experiments. We comprehensively assess the geometric and electronic properties of Pt(100), Pt(110), and Pt(111) surfaces in comparison to their graphene-coated counterparts, revealing different adsorption behaviors of O2 across these surfaces. The ORR mechanisms on different Pt surfaces show distinct rate-determining steps, with Pt(111) showing the highest ORR activity, followed by Pt(110) and Pt(100). Graphene coatings play a key role in enhancing charge transfer from the surface, resulting in modifications of O2 adsorption. Despite influencing ORR kinetics, these graphene-coated surfaces demonstrate competitive catalytic activity compared to their bare counterparts. Notably, Pt(111) with a graphene coating exhibits the lowest activation energy among graphene-coated surfaces. Our calculations also suggest that the ORR can occur directly on non-defective Pt@graphene surfaces rather than being restricted to exposed Pt centers due to point defects on graphene. Furthermore, our work highlights the potential of nitrogen doping onto the Pt(111)@C surface to further enhance ORR activity. This finding positions nitrogen-doped Pt@C as a promising electrocatalyst for advancing electrochemical technologies.

2.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919182

RESUMO

Sustainability and environmental concerns have persuaded researchers to explore renewable materials, such as nature-derived polysaccharides, and add value by changing chemical structures with the aim to possess specific properties, like biological properties. Meanwhile, finding methods and strategies that can lower hazardous chemicals, simplify production steps, reduce time consumption, and acquire high-purified products is an important task that requires attention. To break through these issues, electrical discharging in aqueous solutions at atmospheric pressure and room temperature, referred to as the "solution plasma process", has been introduced as a novel process for modification of nature-derived polysaccharides like chitin and chitosan. This review reveals insight into the electrical discharge in aqueous solutions and scientific progress on their application in a modification of chitin and chitosan, including degradation and deacetylation. The influencing parameters in the plasma process are intensively explained in order to provide a guideline for the modification of not only chitin and chitosan but also other nature-derived polysaccharides, aiming to address economic aspects and environmental concerns.


Assuntos
Quitina/química , Quitosana/química , Gases em Plasma/química , Água/química
3.
Water Sci Technol ; 79(5): 967-974, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31025976

RESUMO

This study presents a catalytic organic pollution treatment using the solution plasma process (SPP) with incidentally co-generated copper (Cu) nanoparticles via Cu electrode erosion. Methylene blue (MB) was used as a model organic contaminant. The treatment time was from 0 to 60 minutes at the plasma frequencies of 15 and 30 kHz. The treatment efficacy using the Cu electrode was compared with that of the tungsten (W) electrode. The high erosion-resistant W electrode provided no W nanoparticles, while the low erosion-resistant Cu electrode yielded incidental nanoparticles (10-20 nm), hypothesized to catalyze the MB degradation during the SPP. The percentage of MB degradation and the hydrogen peroxide (H2O2) generation were determined by an ultraviolet-visible spectrophotometer. The results showed that, after the SPP by the Cu electrode for 60 minutes, the MB was degraded up to 96%. Using the Cu electrode at a high plasma frequency strongly accelerated the Cu nanoparticle generation and MB treatment, although the amount of H2O2 generated during the SPP using the Cu electrode was less than that of the W electrode. The Cu nanoparticles were hypothesized to enhance MB degradation via both homogeneous (release of dissolved Cu ions) and heterogeneous (on the surface of the particles) catalytic processes.


Assuntos
Nanopartículas Metálicas/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Cobre/química , Peróxido de Hidrogênio , Azul de Metileno/análise , Poluentes Químicos da Água/análise
4.
Phys Chem Chem Phys ; 19(23): 15264-15272, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28569295

RESUMO

Synthesis of boron-carbon-nitrogen (BCN) nanocarbon with a controllable bond structure for enhanced oxygen reduction reaction (ORR) activity and durability was performed using a new method of discharge in organic solution mixtures named the 'Solution Plasma Process'. Using selected precursors a new strategy for the simultaneous synthesis of nanocarbon co-doped with heteroatoms was found. The synergistic effect of N and B in an uncoupling bond state improved the formation of new active sites for the ORR performance by changing the electronic structure of the base carbon. Meanwhile, when B and N are bonded together, the BCN catalyst contributes to a reduced ORR activity by forming a balanced electronic structure in carbon. The BCN nanocarbon with an uncoupling bond state exhibits an enhanced ORR activity under alkaline conditions, with an onset potential of -0.25 V versus -0.31 V for B/N coupling and 3.43 transferred electrons during the ORR. Although the ORR activity of the B/N uncoupling nanocarbon was not as good as the typical Pt/C, the durability of this synthesized material (15.1% current decrease after 20 000 s of operation) was significantly better than that of the Pt/C catalyst (61.5% current drop under the same conditions). After the durability test, the increase of the chemical states containing oxygen was higher for Pt/C than B/N uncoupling.

5.
Phys Chem Chem Phys ; 18(16): 10856-63, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27055883

RESUMO

Heterocarbon nanosheets incorporating iron phthalocyanine (FP-NCNs-SP) have been successfully synthesized by a facile one-pot solution plasma process at high repetition frequency. It was found that the Fe-N4 catalytic active sites could be preserved on the FP-NCNs-SP without degradation. The FP-NCNs-SP also possessed large surface area, good conductivity and high degree of graphitization. Electrochemical evaluations demonstrated that NCNs-SP had excellent electrocatalytic activity and selectivity toward oxygen reduction reaction (ORR) in alkaline medium through a direct four-electron pathway. Although the significant improvement in ORR activity was clearly observed in acidic medium, it was much poorer than in alkaline medium. We believe that the results presented in this work will shed light on the advanced synthesis and design of ORR electrocatalysts at room temperature with an abundance of catalytically active sites and high ORR performance.

6.
Sci Technol Adv Mater ; 17(1): 37-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877856

RESUMO

Co nanoparticles (Co NPs) and nanoscale tungsten carbide (WC) are successfully synthesized simultaneously with mesoporous structured carbon black (C) using an innovative simple method, which is known as solution plasma processing (SPP), and NPs are also loaded onto carbon black at the same time by SPP. The introduction of Co NPs led to not only superior oxygen reduction reaction (ORR) activity in terms of onset potential and peak potential, but also to a more efficient electron transfer process compared to that of pure WC. Co-WC/C also showed durability for long-term operation better than that of commercial Pt/C. These results clearly demonstrate that the presence of Co NPs significantly enhanced the ORR and charge transfer number of neighboring WC NPs in ORR activities. In addition, it was proved that SPP is a simple method (from synthesis of NPs and carbon black to loading on carbon black) for the large-scale synthesis of NP-carbon composite. Therefore, SPP holds great potential as a candidate for next-generation synthetic methods for the production of NP-carbon composites.

7.
Phys Chem Chem Phys ; 17(9): 6227-32, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25661238

RESUMO

Nitrogen-doped carbon nanoparticles were synthesized via a solution plasma process, with acrylonitrile as a single-source precursor, followed by a post-thermal annealing process. The nitrogen-bonding states can be tuned by varying the annealing temperature. The best electrocatalytic activity for oxygen reduction reaction (ORR) in terms of both onset potential and limiting current density can be achieved for the catalyst annealed at an optimal temperature of 800 °C because of the high content of graphitic-N catalytic sites and a large specific surface area.

8.
Phys Chem Chem Phys ; 17(45): 30255-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26529327

RESUMO

An extraordinary high-speed synthesis of gold nanoparticles (AuNPs) was discovered by synthesizing the AuNPs in ethanol-water mixtures using a solution plasma process (SPP). The influence of the ethanol mole fraction (χethanol) in the ethanol-water mixtures on the reduction rate of gold chloride ions to AuNPs under the SPP system was studied. The results indicated that the reaction rate of the AuNPs synthesis exhibited a maximum value (i.e. 35.2 times faster than in a pure water system) at the significant point where the partial molar volumes of ethanol and water changed drastically.


Assuntos
Etanol/química , Ouro/química , Nanopartículas Metálicas/química , Água/química , Tamanho da Partícula , Soluções , Propriedades de Superfície
9.
Phys Chem Chem Phys ; 17(1): 407-13, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406572

RESUMO

Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors. The chemical bonding structure, ORR activity and electrochemical performance were compared in detail for each single dopant and multiple dopants. According to the Raman spectra, the carbon structures were deformed by the doped heteroatoms in the carbon matrix. In comparison with N-doped structures (NCNS), the ORR potential of PN-doped structures (PNCNS) was positively shifted from -0.27 V to -0.24 V. It was observed that doping with N decreased the bonding between P and C in the matrix. The multiple doping induced additional active sites for ORR which further enhanced ORR activity and stability. Therefore, PNCNS is a promising metal-free catalyst for ORR at the cathode in a fuel cell.

10.
Phys Chem Chem Phys ; 17(21): 13794-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25946395

RESUMO

Black titania spheres (H-TiO2-x) were synthesized via a simple green method assisted by water plasma at a low temperature and atmospheric pressure. The in situ production of highly energetic hydroxyl and hydrogen species from water plasma are the prominent factors in the oxidation and hydrogenation reactions during the formation of H-TiO2-x, respectively. The visible-light photocatalytic activity toward the dye degradation of H-TiO2-x can be attributed to the synergistic effect of large-surface area, visible-light absorption and the existence of oxygen vacancies and Ti(3+) sites.


Assuntos
Hidrogênio/química , Radical Hidroxila/química , Titânio/química , Água/química , Catálise , Temperatura Baixa , Química Verde , Hidrogenação , Luz , Modelos Moleculares , Oxirredução , Difração de Raios X
11.
J Phys Chem A ; 119(48): 11668-73, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26505749

RESUMO

Our previous research demonstrated that using ethanol-water mixture as a liquid medium for the synthesis of gold nanoparticles by the solution plasma process (SPP) could lead to an increment of the reaction rate of ∼35.2 times faster than that in pure water. This drastic change was observed when a small amount of ethanol, that is, at an ethanol mole fraction (χethanol) of 0.089, was added in the system. After this composition, the reaction rate decreased continuously. To better understand what happens in the ethanol-water mixture-based SPP, in this study, effect of the ethanol content on the radical formation in the system was verified. We focused on detecting the magnetic resonance of electronic spins using electron spin resonance spectroscopy to determine the type and quantity of the generated radicals at each χethanol. Results indicated that ethanol radicals were generated in the ethanol-water mixtures and exhibited maximum quantity at the xethanol of 0.089. Relationship between the ethanol radical yield and the rate of reaction, along with possible mechanism responsible for the observed phenomenon, is discussed in this paper.

12.
Phys Chem Chem Phys ; 16(28): 14905-11, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24931058

RESUMO

In the present work, we demonstrated the significance of a central transition metal, Fe, in a N4-macrocycle for the enhancement of ORR activity and other electrochemical properties. The catalysts were synthesized by a solution plasma process. Fe-phthalocyanine/benzene and phthalocyanine/benzene were chosen as the precursors of Fe-phthalocyanine based mesoporous carbon (FP-MCS) and phthalocyanine based mesoporous carbon (P-MCS) catalysts, respectively. The existence of Fe-N4 and N4 macrocyclic structures was confirmed by X-ray photoelectron spectroscopy. From the chemical bonding structure, FP-MCS demonstrated that the Me-N peaks increased as the amount of iron-phthalocyanine introduced in the experiment increased. The dominant active site was shifted from pyridinic nitrogen to Me-N when iron-phthalocyanine was present. The analysis of Tof-SIMS indicated that the relative intensity of FeN4Cy(+) ions was approximately 50% of the total amount of ionized species of ∑FeNxCy(+). Both XPS and Tof-SIMS results confirmed that the Fe-N4 site was the most favourable structure in the matrix. From CV measurements, the cathodic peak current corresponding to ORR activity slightly shifted from -0.19 V to -0.17 V when the active site changed from N4 to Fe-N4 macrocyclic structure. The current density increased more than 30% in the presence of iron. Based on the calculation of Koutecky-Levich plots, the electron transfer numbers for ORR reaction in P- and FP-MCSs were 3.25 and 3.98, respectively. These results clearly demonstrated that the presence of a Fe central ion in the N4-macrocyclic structure significantly enhanced the ORR and charge transfer number in ORR activities.

13.
J Nanosci Nanotechnol ; 14(12): 9653-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971114

RESUMO

We discussed the electron impact dissociation behavior of the organosilicon molecules with methyl groups, based on the fragment pattern and molecular-orbital calculation of the bond dissociation energies for the molecules. From the calculation of bond dissociation energy of the organosilicon molecules, methyl groups, which bonded directly to the silicon atom, were found to have the weakest. Regarding the fragment patterns of the reactants investigated by a quadrupole mass spectrometer, the hexamethyldisiloxane was harder to dissociate than the trimethylmethoxysilane due to the strong Si-O bonding force, which also affected the dissociation in the plasma. From the above considerations, dissociation reactions by electron impact could be partly identified.


Assuntos
Compostos Orgânicos/química , Gases em Plasma , Silício/química , Elétrons
14.
ACS Omega ; 9(23): 24372-24378, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882070

RESUMO

Lithium-ion batteries are essential batteries for electric vehicle drive systems. Such batteries must provide stable performance over a long period of time. Therefore, the degradation or aging of the battery capacity must be improved. In the case of the current graphite anodes, graphite coated with an amorphous layer is used. It is known that the amorphous layer can reduce the irreversible capacity loss caused by the solid electrolyte interphase (SEI) layer. The amorphous carbon layers reduce the initial capacity due to higher electrical resistance. In this study, we aim to develop a buffer layer using nitrogen-containing graphene that would prevent the increase in electrical resistance while maintaining the amorphous structure. Coatings with different film thicknesses were prepared by using the solution plasma method. The thinnest sample was oven sintered to optimize the structure, especially the surface and interface of the layer. The battery capacity from charge-discharge experiments and the resistance change of each part from electrochemical impedance measurements were evaluated. The results showed that the coating layer increased the electrical resistance of the graphite anode. On the other hand, the resistance of the SEI layer was reduced by the coating layer. It can be predicted that the addition of the coating layer will increase the total charge transfer resistance (R ct) of the cell but will also improve the period average capacity in the long run. To be used as a practical material, the film thickness would need to be further reduced, and the balance between the loss of charge transfer resistance and the gain of SEI layer resistance would need to be further optimized.

15.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255472

RESUMO

With the goal of developing lightweight Al-Ti-containing multicomponent alloys with excellent mechanical strength, an Al-Ti-Cu-Co alloy with a phase-separated microstructure was prepared. The granulometry of metal particles was reduced using planetary ball milling. The particle size of the metal powders decreased as the ball milling time increased from 5, 7, to 15 h (i.e., 6.6 ± 6.4, 5.1 ± 4.3, and 3.2 ± 2.1 µm, respectively). The reduction in particle size and the dispersion of metal powders promoted enhanced diffusion during the spark plasma sintering process. This led to the micro-phase separation of the (Cu, Co)2AlTi (L21) phase, and the formation of a Cu-rich phase with embedded nanoscale Ti-rich (B2) precipitates. The Al-Ti-Cu-Co alloys prepared using powder metallurgy through the spark plasma sintering exhibited different hardnesses of 684, 710, and 791 HV, respectively, while maintaining a relatively low density of 5.8-5.9 g/cm3 (<6 g/cm3). The mechanical properties were improved due to a decrease in particle size achieved through increased ball milling time, leading to a finer grain size. The L21 phase, consisting of (Cu, Co)2AlTi, is the site of basic hardness performance, and the Cu-rich phase is the mechanical buffer layer between the L21 and B2 phases. The finer network structure of the Cu-rich phase also suppresses brittle fracture.

16.
ACS Appl Mater Interfaces ; 16(6): 7038-7046, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307866

RESUMO

Amino-functionalized carbon (NH2C) is an effective adsorbent in removing pollutants from contaminated water because of its high specific surface area and electrical charge. In the conventional preparation method, the introduction of amino groups onto the carbon surface is limited, resulting in low pollutant adsorption. Herein, we present simultaneous carbonization and amination to form NH2C via electrical discharge of nonequilibrium plasma, and the resultant material is applied as an effective adsorbent in fluoride removal. The simultaneous process introduces numerous amino groups into the carbon framework, enhancing the adsorption efficiency. The fluoride adsorption capacity is approximately 121.12 mg g-1, which is several times higher than those reported in previous studies. Furthermore, computational modeling is performed to yield deeper mechanistic insights into the molecular-level adsorption behavior. These data are useful in designing and synthesizing advanced materials for applications in water remediation.

17.
Nanotechnology ; 24(5): 055604, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23324223

RESUMO

In this study, we investigate a new synthetic route, termed the solution plasma process, for the synthesis of colloidal copper nanoparticles (CuNPs) in the presence of an amide and acid capping agent. Gelatin and ascorbic acid were selected as the capping agents to protect the particles against coalescence and oxidation side reaction. Using a high voltage power supply, CuNPs were rapidly formed by 1 min after the discharge. The size and shape of the CuNPs were dependent on the discharge time and were clearly influenced by the effect of the capping agents under two characteristics of the discharge medium (pH and temperature). With a long discharge time, the CuNP size tended to decrease with the formation of anisotropic particle morphologies: spherical, cubic, hexagonal, triangular and rod-like shapes. The decrease in CuNP size as a function of discharge time could be explained by the dissolution of CuNPs in a lower pH solution. After 5 min discharge the capping agent evidently allowed the protection of the synthesized CuNPs against oxidation with the presence of anisotropic CuNP shapes. It is demonstrated that the CuNP shape could be tuned from spherical to anisotropic shapes without the undesirable oxidation by adjusting the discharge time of the solution plasma. These advantages are valuable for material engineering to design the properties of Cu-based nanoparticles for the desired applications.

18.
Water Sci Technol ; 68(4): 923-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985525

RESUMO

Advanced oxidation techniques are efficient processes to dispose of organic contaminants in industrial wastewater with low secondary pollution. The solution plasma technique was featured as an advanced oxidation technique with low secondary pollution and high efficiency. However, the solution plasma technique reported previously could only treat wastewater of less than 200 mL owing to the limited plasma generated by only one pair of electrodes. In this work, multiple pairs of electrodes were installed at the bottom of the reaction vessel to generate plasma for decomposing methylene blue trihydrate (MB) and methyl orange (MO) solutions with a batch amount of 18 L/batch. The solution plasma technique was compared with direct ozonation in decomposition of MB and MO wastewater. A surprising phenomenon is that MO was more readily decomposed than MB by using direct ozonation, whereas the removal of MO was too low, and MB was more readily decomposed than MO by using the solution plasma technique.


Assuntos
Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Ozônio , Purificação da Água/métodos
19.
Small Methods ; 7(11): e2300691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672805

RESUMO

Conversion-alloying anodes have garnered escalating attention with high theoretical capacity, however, they are seriously hindered by large volume distortion and capacity fading. To counter, structural modification needs more exploration. Herein, advantageous structure and high-performance are realized in new amorphous PbSb2 O6 (PSO-a) nanosphere via facile instantaneous precipitation induced amorphization; conversion-alloying mechanism endows it with prominent lithium-storage capability; nanostructure can shorten ion-transfer distance and accommodate volume change outside the bulk of PSO-a; and loosely-stacked isotropic amorphous structure can enhance kinetics both at electrode/electrolyte interfaces and in the bulk. Volume change is synergistically stabilized from within to outside the bulk, leading to accelerated capacity and cycling. As expected, when employed in half-cells with 1 m LiPF6 in ethylene carbonate/diethyl carbonate/dimethyl carbonate/fluoroethylene carbonate (3:3:3:1 by mass) as electrolyte, glass microfiber filter as separator, and pure lithium foil as counter electrode, it realizes eminent performance with high specific capacity of 1512.6 mA h g-1 at 0.1 A g-1 and 755.1 mA h g-1 after 1000 cycles at 3 A g-1 . To the best of the authors' knowledge, this is the first time PbSb2 O6 is utilized as high-performance anode for lithium-ion batteries. Furthermore, this facile strategy provides a promising direction for high-performance amorphous anode material.

20.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769911

RESUMO

Carbon fibers are materials with potential applications for CO2 capture due to their porous structure and high surface areas. Nevertheless, controlling their porosity at a microscale remains challenging. The solution plasma (SP) process provides a fast synthesis route for carbon materials when organic precursors are used. During the discharge and formation of carbon materials in solution, a soot product-denominated solution plasma-generated seeds (SPGS) is simultaneously produced at room temperature and atmospheric pressure. Here, we propose a preparation method for carbon fibers with different and distinctive morphologies. The control over the morphology is also demonstrated by the use of different formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA