Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Proteome Res ; 20(4): 2130-2137, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33683127

RESUMO

metaQuantome is a software suite that enables the quantitative analysis, statistical evaluation. and visualization of mass-spectrometry-based metaproteomics data. In the latest update of this software, we have provided several extensions, including a step-by-step training guide, the ability to perform statistical analysis on samples from multiple conditions, and a comparative analysis of metatranscriptomics data. The training module, accessed via the Galaxy Training Network, will help users to use the suite effectively both for functional as well as for taxonomic analysis. We extend the ability of metaQuantome to now perform multi-data-point quantitative and statistical analyses so that studies with measurements across multiple conditions, such as time-course studies, can be analyzed. With an eye on the multiomics analysis of microbial communities, we have also initiated the use of metaQuantome statistical and visualization tools on outputs from metatranscriptomics data, which complements the metagenomic and metaproteomic analyses already available. For this, we have developed a tool named MT2MQ ("metatranscriptomics to metaQuantome"), which takes in outputs from the ASaiM metatranscriptomics workflow and transforms them so that the data can be used as an input for comparative statistical analysis and visualization via metaQuantome. We believe that these improvements to metaQuantome will facilitate the use of the software for quantitative metaproteomics and metatranscriptomics and will enable multipoint data analysis. These improvements will take us a step toward integrative multiomic microbiome analysis so as to understand dynamic taxonomic and functional responses of these complex systems in a variety of biological contexts. The updated metaQuantome and MT2MQ are open-source software and are available via the Galaxy Toolshed and GitHub.


Assuntos
Microbiota , Proteômica , Espectrometria de Massas , Metagenômica , Software
2.
Mol Cell Proteomics ; 18(8 suppl 1): S82-S91, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235611

RESUMO

Microbiome research offers promising insights into the impact of microorganisms on biological systems. Metaproteomics, the study of microbial proteins at the community level, integrates genomic, transcriptomic, and proteomic data to determine the taxonomic and functional state of a microbiome. However, standard metaproteomics software is subject to several limitations, commonly supporting only spectral counts, emphasizing exploratory analysis rather than hypothesis testing and rarely offering the ability to analyze the interaction of function and taxonomy - that is, which taxa are responsible for different processes.Here we present metaQuantome, a novel, multifaceted software suite that analyzes the state of a microbiome by leveraging complex taxonomic and functional hierarchies to summarize peptide-level quantitative information, emphasizing label-free intensity-based methods. For experiments with multiple experimental conditions, metaQuantome offers differential abundance analysis, principal components analysis, and clustered heat map visualizations, as well as exploratory analysis for a single sample or experimental condition. We benchmark metaQuantome analysis against standard methods, using two previously published datasets: (1) an artificially assembled microbial community dataset (taxonomy benchmarking) and (2) a dataset with a range of recombinant human proteins spiked into an Escherichia coli background (functional benchmarking). Furthermore, we demonstrate the use of metaQuantome on a previously published human oral microbiome dataset.In both the taxonomic and functional benchmarking analyses, metaQuantome quantified taxonomic and functional terms more accurately than standard summarization-based methods. We use the oral microbiome dataset to demonstrate metaQuantome's ability to produce publication-quality figures and elucidate biological processes of the oral microbiome. metaQuantome enables advanced investigation of metaproteomic datasets, which should be broadly applicable to microbiome-related research. In the interest of accessible, flexible, and reproducible analysis, metaQuantome is open source and available on the command line and in Galaxy.


Assuntos
Microbiota , Proteômica , Software , Criança , Placa Dentária/microbiologia , Disbiose/microbiologia , Escherichia coli/genética , Humanos , Doenças da Boca/microbiologia , Peptídeos/metabolismo
3.
J Proteome Res ; 19(7): 2772-2785, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396365

RESUMO

Multiomics approaches focused on mass spectrometry (MS)-based data, such as metaproteomics, utilize genomic and/or transcriptomic sequencing data to generate a comprehensive protein sequence database. These databases can be very large, containing millions of sequences, which reduces the sensitivity of matching tandem mass spectrometry (MS/MS) data to sequences to generate peptide spectrum matches (PSMs). Here, we describe and evaluate a sectioning method for generating an enriched database for those protein sequences that are most likely present in the sample. Our evaluation demonstrates how this method helps to increase the sensitivity of PSMs while maintaining acceptable false discovery rate statistics-offering a flexible alternative to traditional large database searching, as well as previously described two-step database searching methods for large sequence database applications. Furthermore, implementation in the Galaxy platform provides access to an automated and customizable workflow for carrying out the method. Additionally, the results of this study provide valuable insights into the advantages and limitations offered by available methods aimed at addressing challenges of genome-guided, large database applications in proteomics. Relevant raw data has been made available at https://zenodo.org/ using data set identifier "3754789" and https://arcticdata.io/catalog using data set identifier "A2VX06340".


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Bases de Dados de Proteínas , Genômica , Peptídeos/genética , Software
4.
J Proteome Res ; 18(2): 782-790, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30582332

RESUMO

Next-generation sequencing technologies, coupled to advances in mass-spectrometry-based proteomics, have facilitated system-wide quantitative profiling of expressed mRNA transcripts and proteins. Proteo-transcriptomic analysis compares the relative abundance levels of transcripts and their corresponding proteins, illuminating discordant gene product responses to perturbations. These results reveal potential post-transcriptional regulation, providing researchers with important new insights into underlying biological and pathological disease mechanisms. To carry out proteo-transcriptomic analysis, researchers require software that statistically determines transcript-protein abundance correlation levels and provides results visualization and interpretation functionality, ideally within a flexible, user-friendly platform. As a solution, we have developed the QuanTP software within the Galaxy platform. The software offers a suite of tools and functionalities critical for proteo-transcriptomics, including statistical algorithms for assessing the correlation between single transcript-protein pairs as well as across two cohorts, outlier identification and clustering, along with a diverse set of results visualizations. It is compatible with analyses of results from single experiment data or from a two-cohort comparison of aggregated replicate experiments. The tool is available in the Galaxy Tool Shed through a cloud-based instance and a Docker container. In all, QuanTP provides an accessible and effective software resource, which should enable new multiomic discoveries from quantitative proteo-transcriptomic data sets.


Assuntos
Biologia Computacional/métodos , Análise de Dados , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Software , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas
5.
J Proteome Res ; 17(12): 4329-4336, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30130115

RESUMO

The Chromosome-centric Human Proteome Project (C-HPP) seeks to comprehensively characterize all protein products coded by the genome, including those expressed sequence variants confirmed via proteogenomics methods. The closely related Biology/Disease-driven Human Proteome Project (B/D-HPP) seeks to understand the biological and pathological associations of expressed protein products, especially those carrying sequence variants that may be drivers of disease. To achieve these objectives, informatics tools are required that interpret potential functional or disease implications of variant protein sequence detected via proteogenomics. Toward this end, we have developed an automated workflow within the Galaxy for Proteomics (Galaxy-P) platform, which leverages the Cancer-Related Analysis of Variants Toolkit (CRAVAT) and makes it interoperable with proteogenomic results. Protein sequence variants confirmed by proteogenomics are assessed for potential structure-function effects as well as associations with cancer using CRAVAT's rich suite of functionalities, including visualization of results directly within the Galaxy user interface. We demonstrate the effectiveness of this workflow on proteogenomic results generated from an MCF7 breast cancer cell line. Our free and open software should enable improved interpretation of the functional and pathological effects of protein sequence variants detected via proteogenomics, acting as a bridge between the C-HPP and B/D-HPP.


Assuntos
Proteogenômica/métodos , Proteoma , Software , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Variação Genética , Humanos , Células MCF-7 , Neoplasias/genética , Fluxo de Trabalho
6.
Transplant Cell Ther ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871054

RESUMO

BACKGROUND: Hematopoietic cell transplantation (HCT) has undergone many advances over the decades. Trends in HCT utilization have been impacted by research based on the data and samples collected by the Center for International Blood and Marrow Transplant Research (CIBMTR). OBJECTIVE: Here, we provide a summary report of the CIBMTR Biorepository resource and describe the biospecimen inventory along with collection and request procedures. STUDY DESIGN: The diversity captured in this inventory reflects transplant activity, and these samples can be leveraged for secondary analyses to generate more data and insights to advance the field. RESULTS: We describe how our resources have already impacted HCT practice and elaborate on possibilities for further collaboration and utilization to maximize capabilities and research opportunities. CONCLUSION: Hematopoietic cell transplant data and Biorepository resources at the Center for International Blood and Marrow Transplant Research have been and continue to be leveraged to improve patient outcomes.

7.
Blood Adv ; 7(17): 4809-4821, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37126658

RESUMO

HLA-DP is a classic transplantation antigen that mediates alloreactivity through T-cell epitope (TCE) diversity and expression levels. A current challenge is to integrate these functional features into the prospective selection of unrelated donor candidates for transplantation. Genetically, HLA-DPB1 exon 2 defines the permissive and nonpermissive TCE groups, and exons 2 and 3 (in linkage with rs9277534) indicate low- and high-expression allotypes. In this study, we analyzed 356 272 exon 2-exon 3-phased sequences from individuals across 5 self-identified race and ethnicity categories: White, Hispanic, Asian or Pacific Islander, Black or African American, and American Indian or Alaskan Native. This sequence data set revealed the complex relationship between TCE and expression models and the importance of exon 3 sequence data. We also studied archived donor search lists for 2545 patients who underwent transplantation from an HLA-11/12 unrelated donor mismatched for a single HLA-DPB1 allele. Depending on the order in which the TCE and expression criteria were considered, some patients had different TCE- and expression-favorable donors. In addition, this data set revealed that many expression-favorable alternatives existed in the search lists. To improve the selection of candidate donors, we provide, disseminate, and automate our findings through our multifaceted tool called Expression of HLA-DP Assessment Tool, consisting of a public web application, Python package, and analysis pipeline.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Prospectivos , Teste de Histocompatibilidade , Cadeias beta de HLA-DP/genética , Doadores não Relacionados , Variação Genética
8.
Blood Adv ; 6(1): 270-280, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34529780

RESUMO

Sequence variation in the HLA-B gene is critically linked to differential immune responses. A dimorphism at -21 of HLA-B exon 1 gives rise to leader peptides that are markers for risk of acute graft-versus-host disease, relapse, and mortality after unrelated donor and cord blood transplantation. To optimize the selection of stem cell transplant sources based on the HLA-B leader, an HLA-BLeader Assessment Tool (BLEAT) was developed to automate the assignment of leader genotypes, define HLA-B leader match statuses, and rank order candidate stem cell sources according to clinical risk. The base cohort consisted of 9 417 614 registered donors from the Be The Match Registry with HLA-B typing. Among these donors, the performance of BLEAT was assessed in 1 098 358 donors with sequence data for HLA-B exon 1 (2 196 716 haplotypes). The accuracy of leader assignment was then assessed in a second cohort of 1259 patients and their unrelated transplant donors. We furthermore established the frequencies of HLA-B leader genotype (MM, MT, TT) representations in broad racial categories in the 9.42 million donors. BLEAT has direct applications for the selection of optimal stem cell sources for transplantation and broad utility in basic and clinical research in pharmacogenomics, vaccine development, and cancer and infectious disease studies of human populations.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Variação Genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Antígenos HLA-B/genética , Humanos , Doadores não Relacionados
9.
Hum Immunol ; 82(12): 903-911, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34362573

RESUMO

Despite its demonstrated importance in hematopoietic cell transplantation, the HLA-DPB1 locus is only typed in one in five unrelated donors in the United States. Addressing this issue, we developed a DPB1 Prediction Service that leverages seven-locus haplotype frequencies (HLA-A ∼ C ∼ B ∼ DRB3/4/5 ∼ DRB1 ∼ DQB1 ∼ DPB1) to extend the imputation of six-locus HLA typing (HLA-A ∼ C ∼ B ∼ DRB3/4/5 ∼ DRB1 ∼ DQB1) to the HLA-DPB1 locus, including the novel prediction of HLA-DPB1 TCE groups to calculate donor-recipient TCE permissive match probabilities. Simulations of current-day patient searches reveal the service can fill in missing gaps for another four in five donors that appears on lists. To validate its performance, samples of 206,328 registered donors and 5,218 donor-recipient pairs with known high-resolution HLA-DPB1 typing were used for predicted-versus-observed comparisons. These comparisons demonstrated that the predictions were correct for 11.9-19.7% of HLA-DPB1 genotypes, 64.9-70.0% of TCE groups, and 61.0% of permissive match categories. Although HLA-DPB1 match predictions must be confirmed by additional typing, knowledge of TCE match probabilities facilitates rapid and improved identification of best donor options, especially for populations of color. Thus, we developed the TCE Prediction Tool user interface for a pilot program with several transplant centers to preview the accuracy and utility of this prediction framework, which provides valuable upfront optimization of donor selection.


Assuntos
Bases de Dados de Ácidos Nucleicos , Seleção do Doador , Genótipo , Cadeias beta de HLA-DP , Transplante de Células-Tronco Hematopoéticas , Teste de Histocompatibilidade , Doadores não Relacionados , Feminino , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Humanos , Masculino
10.
F1000Res ; 10: 103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484688

RESUMO

The Earth Microbiome Project (EMP) aided in understanding the role of microbial communities and the influence of collective genetic material (the 'microbiome') and microbial diversity patterns across the habitats of our planet. With the evolution of new sequencing technologies, researchers can now investigate the microbiome and map its influence on the environment and human health. Advances in bioinformatics methods for next-generation sequencing (NGS) data analysis have helped researchers to gain an in-depth knowledge about the taxonomic and genetic composition of microbial communities. Metagenomic-based methods have been the most commonly used approaches for microbiome analysis; however, it primarily extracts information about taxonomic composition and genetic potential of the microbiome under study, lacking quantification of the gene products (RNA and proteins). On the other hand, metatranscriptomics, the study of a microbial community's RNA expression, can reveal the dynamic gene expression of individual microbial populations and the community as a whole, ultimately providing information about the active pathways in the microbiome.  In order to address the analysis of NGS data, the ASaiM analysis framework was previously developed and made available via the Galaxy platform. Although developed for both metagenomics and metatranscriptomics, the original publication demonstrated the use of ASaiM only for metagenomics, while thorough testing for metatranscriptomics data was lacking.  In the current study, we have focused on validating and optimizing the tools within ASaiM for metatranscriptomics data. As a result, we deliver a robust workflow that will enable researchers to understand dynamic functional response of the microbiome in a wide variety of metatranscriptomics studies. This improved and optimized ASaiM-metatranscriptomics (ASaiM-MT) workflow is publicly available via the ASaiM framework, documented and supported with training material so that users can interrogate and characterize metatranscriptomic data, as part of larger meta-omic studies of microbiomes.


Assuntos
Metagenômica , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Microbiota/genética , Fluxo de Trabalho
11.
Gigascience ; 9(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236523

RESUMO

BACKGROUND: Proteogenomics integrates genomics, transcriptomics, and mass spectrometry (MS)-based proteomics data to identify novel protein sequences arising from gene and transcript sequence variants. Proteogenomic data analysis requires integration of disparate 'omic software tools, as well as customized tools to view and interpret results. The flexible Galaxy platform has proven valuable for proteogenomic data analysis. Here, we describe a novel Multi-omics Visualization Platform (MVP) for organizing, visualizing, and exploring proteogenomic results, adding a critically needed tool for data exploration and interpretation. FINDINGS: MVP is built as an HTML Galaxy plug-in, primarily based on JavaScript. Via the Galaxy API, MVP uses SQLite databases as input-a custom data type (mzSQLite) containing MS-based peptide identification information, a variant annotation table, and a coding sequence table. Users can interactively filter identified peptides based on sequence and data quality metrics, view annotated peptide MS data, and visualize protein-level information, along with genomic coordinates. Peptides that pass the user-defined thresholds can be sent back to Galaxy via the API for further analysis; processed data and visualizations can also be saved and shared. MVP leverages the Integrated Genomics Viewer JavaScript framework, enabling interactive visualization of peptides and corresponding transcript and genomic coding information within the MVP interface. CONCLUSIONS: MVP provides a powerful, extensible platform for automated, interactive visualization of proteogenomic results within the Galaxy environment, adding a unique and critically needed tool for empowering exploration and interpretation of results. The platform is extensible, providing a basis for further development of new functionalities for proteogenomic data visualization.


Assuntos
Visualização de Dados , Genoma/genética , Proteoma/genética , Proteômica , Sequência de Aminoácidos/genética , Biologia Computacional/tendências , Genômica/tendências , Humanos , Espectrometria de Massas , Fases de Leitura Aberta , Peptídeos/genética
12.
Proteomes ; 8(3)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650610

RESUMO

For mass spectrometry-based peptide and protein quantification, label-free quantification (LFQ) based on precursor mass peak (MS1) intensities is considered reliable due to its dynamic range, reproducibility, and accuracy. LFQ enables peptide-level quantitation, which is useful in proteomics (analyzing peptides carrying post-translational modifications) and multi-omics studies such as metaproteomics (analyzing taxon-specific microbial peptides) and proteogenomics (analyzing non-canonical sequences). Bioinformatics workflows accessible via the Galaxy platform have proven useful for analysis of such complex multi-omic studies. However, workflows within the Galaxy platform have lacked well-tested LFQ tools. In this study, we have evaluated moFF and FlashLFQ, two open-source LFQ tools, and implemented them within the Galaxy platform to offer access and use via established workflows. Through rigorous testing and communication with the tool developers, we have optimized the performance of each tool. Software features evaluated include: (a) match-between-runs (MBR); (b) using multiple file-formats as input for improved quantification; (c) use of containers and/or conda packages; (d) parameters needed for analyzing large datasets; and (e) optimization and validation of software performance. This work establishes a process for software implementation, optimization, and validation, and offers access to two robust software tools for LFQ-based analysis within the Galaxy platform.

13.
PLoS One ; 15(11): e0241503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170893

RESUMO

To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform.


Assuntos
Metagenômica , Microbiota , Proteômica , Software , Inquéritos e Questionários , Sequência de Aminoácidos , Disbiose/microbiologia , Ontologia Genética , Peptídeos/análise , Peptídeos/química , Fluxo de Trabalho
14.
J Chromatogr A ; 1523: 162-172, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747254

RESUMO

An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension (1D) column into the second dimension (2D) column leads to severe 2D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1D mobile phase overwhelms the 2D column with each injection of 1D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80µL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods.


Assuntos
Cromatografia Líquida , Simulação por Computador , Indicadores e Reagentes , Compostos Orgânicos , Solventes/química
15.
J Chromatogr A ; 1457: 41-9, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27345210

RESUMO

High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The issues of sample/eluent solvent mismatch and solvent volume overload are especially important when considering the challenges of transferring eluent from the first to the second dimension in comprehensive two-dimensional liquid chromatography.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Solventes/química , Modelos Teóricos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA