Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(2): 027002, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386520

RESUMO

In the electronic nematic state, an electronic system has a lower symmetry than the crystal structure of the same system. Electronic nematic states have been observed in various unconventional superconductors such as cuprate, iron-based, heavy-fermion, and topological superconductors. The relation between nematicity and superconductivity is a major unsolved problem in condensed matter physics. By angle-resolved specific heat measurements, we report bulk quasiparticle evidence of nematicity in the topological superconductor Sr_{x}Bi_{2}Se_{3}. The specific heat exhibited a clear twofold symmetry despite the threefold symmetric lattice. Most importantly, the twofold symmetry appeared in the normal state above the superconducting transition temperature. This is explained by the angle-dependent Zeeman effect due to the anisotropic density of states in the nematic phase. Such results highlight the interrelation between nematicity and unconventional superconductivity.

2.
Phys Rev Lett ; 122(25): 256601, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347904

RESUMO

We report the discovery of giant and anisotropic magnetoresistance due to the orbital rearrangement in a non magnetic correlated metal. In particular, we measured the magnetoresistance under fields up to 31.4 T in the cubic Pr-based heavy fermion superconductor PrV_{2}Al_{20} with a non magnetic Γ_{3} doublet ground state, exhibiting antiferroquadrupole ordering below 0.7 K. For the [100] direction, we find that the high-field phase appears between 12 and 25 T, accompanied by a large jump at 12 T in the magnetoresistance (ΔMR∼100%) and in the anisotropic magnetoresistivity ratio by ∼20%. These observations indicate that the strong hybridization between the conduction electrons and anisotropic quadrupole moments leads to the Fermi surface reconstruction upon crossing the field-induced antiferroquadrupole (orbital) rearrangement.

3.
Rep Prog Phys ; 79(9): 094002, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482621

RESUMO

Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T = Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures.

4.
Phys Rev Lett ; 117(3): 037001, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472129

RESUMO

Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲µ_{0}H≲2 T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors.

5.
Nature ; 463(7278): 210-3, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20010605

RESUMO

Spin liquids are magnetically frustrated systems, in which spins are prevented from ordering or freezing, owing to quantum or thermal fluctuations among degenerate states induced by the frustration. Chiral spin liquids are a hypothetical class of spin liquids in which the time-reversal symmetry is macroscopically broken in the absence of an applied magnetic field or any magnetic dipole long-range order. Even though such chiral spin-liquid states were proposed more than two decades ago, an experimental realization and observation of such states has remained a challenge. One of the characteristic order parameters in such systems is a macroscopic average of the scalar spin chirality, a solid angle subtended by three nearby spins. In previous experimental reports, however, the spin chirality was only parasitic to the non-coplanar spin structure associated with a magnetic dipole long-range order or induced by the applied magnetic field, and thus the chiral spin-liquid state has never been found. Here, we report empirical evidence that the time-reversal symmetry can be broken spontaneously on a macroscopic scale in the absence of magnetic dipole long-range order. In particular, we employ the anomalous Hall effect to directly probe the broken time-reversal symmetry for the metallic frustrated magnet Pr(2)Ir(2)O(7). An onset of the Hall effect is observed at zero field in the absence of uniform magnetization, within the experimental accuracy, suggesting an emergence of a chiral spin liquid. The origin of this spontaneous Hall effect is ascribed to chiral spin textures, which are inferred from the magnetic measurements indicating the spin ice-rule formation.

6.
Phys Rev Lett ; 114(14): 147002, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910153

RESUMO

Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

7.
Phys Rev Lett ; 112(6): 067002, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580704

RESUMO

Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. Here, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.

8.
Nat Commun ; 13(1): 2141, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440657

RESUMO

Intermetallic compounds containing f-electron elements have been prototypical materials for investigating strong electron correlations and quantum criticality (QC). Their heavy fermion ground state evoked by the magnetic f-electrons is susceptible to the onset of quantum phases, such as magnetism or superconductivity, due to the enhanced effective mass (m*) and a corresponding decrease of the Fermi temperature. However, the presence of f-electron valence fluctuations to a non-magnetic state is regarded an anathema to QC, as it usually generates a paramagnetic Fermi-liquid state with quasiparticles of moderate m*. Such systems are typically isotropic, with a characteristic energy scale T0 of the order of hundreds of kelvins that require large magnetic fields or pressures to promote a valence or magnetic instability. Here we show the discovery of a quantum critical behaviour and a Lifshitz transition under low magnetic field in an intermediate valence compound α-YbAlB4. The QC origin is attributed to the anisotropic hybridization between the conduction and localized f-electrons. These findings suggest a new route to bypass the large valence energy scale in developing the QC.

9.
Sci Rep ; 11(1): 12098, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103650

RESUMO

Glassy magnetic behavior has been observed in a wide range of crystalline magnetic materials called spin glass. Here, we report spin glass behavior in a structural glass of a magnetic ionic liquid, C4mimFeCl4. Magnetization measurements demonstrate that an antiferromagnetic ordering occurs at TN = 2.3 K in the crystalline state, while a spin glass transition occurs at TSG = 0.4 K in the structural glass state. In addition, localized magnetic excitations were found in the spin glass state by inelastic neutron scattering, in contrast to spin-wave excitations in the ordered phase of the crystalline sample. The localized excitation was scaled by the Bose population factor below TSG and gradually disappeared above TSG. This feature is highly reminiscent of boson peaks commonly observed in structural glasses. We suggest the "magnetic" boson peak to be one of the inherent dynamics of a spin glass state.

10.
Rev Sci Instrum ; 92(12): 123908, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972457

RESUMO

High-sensitivity capacitive Faraday magnetometers were developed for static DC magnetization measurements in a sub-Kelvin region that can be used with 3He-4He dilution refrigerators (∼50 mK) and 3He refrigerators (∼0.28 K). For high-resolution magnetization measurements, the background magnetization of the force-sensing capacitor should be as small as possible, compared with the magnetization value of a measured specimen. In this study, we succeeded in reducing the background of the capacitor in both low- and high-field regions by compensating for the diamagnetic response of a thin quartz plate, making use of Pauli-paramagnetic alloys and Van Vleck paramagnets as a counter magnetization for a diamagnetic signal. Having established an ultra-high-sensitivity capacitor, we achieved a resolution of 10-5 (∼10-5-10-6) emu in the low- (high-) field region below (above) 1 T. In particular, the newly developed capacitors with a Van Vleck paramagnet Pr0.1La0.9Be13 and paramagnetic MgAl alloys are demonstrated to be very useful for high-resolution magnetization measurements at milli-Kelvin temperatures in low and high magnetic fields, respectively.

11.
Sci Bull (Beijing) ; 65(16): 1349-1355, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659213

RESUMO

Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics. In addition to the continuous electromagnetic gauge symmetry, an unconventional superconductor can break discrete symmetries simultaneously, such as time reversal and lattice rotational symmetry. In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings, despite its hexagonal lattice symmetry (or D3h in bulk while C3v on surface, to be precise). The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC≪Hc2R, signaling its probable surface-only electronic nematicity. In addition, we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution. It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate, CuxBi2Se3, where the nematicity occurs in various bulk measurements. In combination with theory, superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2, rather than the proximity effect. The issue of time reversal symmetry breaking is also addressed. Thus, our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.

12.
Rev Sci Instrum ; 91(12): 125107, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379936

RESUMO

We show theoretically and experimentally that accurate transport measurements are possible even within the short time provided by pulsed magnetic fields. For this purpose, a new method has been devised, which removes the noise component of a specific frequency from the signal by taking a linear combination of the results of numerical phase detection using multiple integer periods. We also established a method to unambiguously determine the phase rotation angle in AC transport measurements using a frequency range of tens of kilohertz. We revealed that the dominant noise in low-frequency transport measurements in pulsed magnetic fields is the electromagnetic induction caused by mechanical vibrations of wire loops in inhomogeneous magnetic fields. These results strongly suggest that accurate transport measurements in short-pulsed magnets are possible when mechanical vibrations are well suppressed.

13.
Sci Adv ; 4(2): eaao3547, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492456

RESUMO

A valence critical end point existing near the absolute zero provides a unique case for the study of a quantum version of the strong density fluctuation at the Widom line in the supercritical fluids. Although singular charge and orbital dynamics are suggested theoretically to alter the electronic structure significantly, breaking down the standard quasi-particle picture, this has never been confirmed experimentally to date. We provide the first empirical evidence that the proximity to quantum valence criticality leads to a clear breakdown of Fermi liquid behavior. Our detailed study of the mixed valence compound α-YbAlB4 reveals that a small chemical substitution induces a sharp valence crossover, accompanied by a pronounced non-Fermi liquid behavior characterized by a divergent effective mass and unusual T/B scaling in the magnetization.

14.
Sci Rep ; 7(1): 16144, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170459

RESUMO

Quantum entanglement in magnetic materials is expected to yield a quantum spin liquid (QSL), in which strong quantum fluctuations prevent magnetic ordering even at zero temperature. This topic has been one of the primary focuses of condensed-matter science since Anderson first proposed the resonating valence bond state in a certain spin-1/2 frustrated magnet in 1973. Since then, several candidate materials featuring frustration, such as triangular and kagome lattices, have been reported to exhibit liquid-like behavior. However, the mechanisms that stabilize the liquid-like states have remained elusive. Here, we present a QSL state in a spin-1/2 honeycomb lattice with randomness in the exchange interaction. That is, we successfully introduce randomness into the organic radial-based complex and realize a random-singlet (RS) state (or valence bond glass). All magnetic and thermodynamic experimental results indicate the liquid-like behaviors, which are consistent with those expected in the RS state. Our results suggest that the randomness or inhomogeneity in the actual systems stabilize the RS state and yield liquid-like behavior.

15.
Sci Adv ; 3(6): e1601667, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691082

RESUMO

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

16.
Sci Rep ; 5: 15327, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468930

RESUMO

Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL.

17.
Science ; 331(6015): 316-9, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21252341

RESUMO

Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor ß-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi liquid behavior takes place in a mixed-valence state, which is in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.

18.
Rev Sci Instrum ; 81(3): 033901, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20370186

RESUMO

A loading system for hydrogen gas into the diamond-anvil cell has been developed. The loading of hydrogen gas is performed under low temperature by using liquid helium as a cooling medium. Also, a compression apparatus has been developed to load gaseous materials into various diamond-anvil cells. The present loading system and compression apparatus have been used successfully to form hydrogen hydrate. The present loading system can also be used to load other gaseous materials as a pressure medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA