Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203744

RESUMO

Early detection and management are crucial for better prognosis in acute myocardial infarction (AMI). Serum titin, a component of the sarcomere in cardiac and skeletal muscle, was associated with AMI. Thus, we hypothesized that urinary N-fragment titin may be a biomarker for its diagnosis and prognosis. Between January 2021 and November 2021, we prospectively enrolled 83 patients with suspected AMI. Their urinary N-fragment titin, serum high-sensitivity troponin I (hsTnI), creatine kinase (CK), and creatine kinase-MB (CK-MB) were measured on admission. Then, urinary titin was assessed as diagnostic and prognostic biomarker in AMI. Among 83 enrolled patients, 51 patients were diagnosed as AMI. In AMI patients who were admitted as early as 3 h or longer after symptom onset, their urinary titin levels were significantly higher than non-AMI patients who are also admitted 3 h or longer after symptom onset (12.76 [IQR 5.87-16.68] pmol/mgCr (creatinine) and 5.13 [IQR 3.93-11.25] pmol/mgCr, p = 0.045, respectively). Moreover, the urinary titin levels in patients who died during hospitalization were incredibly higher than in those who were discharged (15.90 [IQR 13.46-22.61] pmol/mgCr and 4.90 [IQR 3.55-11.95] pmol/mgCr, p = 0.023). Urinary N-fragment titin can be used as non-invasive early diagnostic biomarker in AMI. Furthermore, it associates with hospital discharge disposition, providing prognostic utility.


Assuntos
Infarto do Miocárdio , Humanos , Biomarcadores , Conectina , Creatina Quinase , Creatina Quinase Forma MB , Coração , Infarto do Miocárdio/diagnóstico
2.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891908

RESUMO

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Assuntos
Citocinas , MAP Quinase Quinase Quinases , Atrofia Muscular , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/tratamento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Zearalenona/farmacologia , Zearalenona/análogos & derivados
3.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542761

RESUMO

Patients undergoing gastrectomy for gastric cancer may experience alterations in olfaction, yet the association between olfactory changes and postoperative weight loss remains uncertain. This study aimed to elucidate the relationship between olfactory changes and postoperative weight loss in patients with gastric cancer. Patients who underwent radical gastrectomy for gastric cancer between February 2022 and August 2022 were included in the study. Those experiencing a higher Visual Analog Scale (VAS) score postoperatively compared to preoperatively were deemed to have undergone olfactory changes. Postoperative weight loss was determined using the 75th percentile as a cutoff value, designating patients surpassing this threshold as experiencing significant weight loss. Multivariate logistic regression analysis was employed to identify risk factors for postoperative weight loss, with statistical significance set at p < 0.05. Out of 58 patients, 10 (17.2%) exhibited olfactory changes. The rate of postoperative weight loss at one month was markedly higher in the group with olfactory changes compared to those without (9.6% versus 6.2%, respectively; p = 0.002). In addition, the group experiencing olfactory changes demonstrated significantly lower energy intake compared to the group without such changes (1050 kcal versus 1250 kcal, respectively; p = 0.029). Logistic regression analysis revealed olfactory changes as an independent risk factor for significant weight loss at one month postoperatively (odds ratio: 7.64, 95% confidence interval: 1.09-71.85, p = 0.048). In conclusion, olfactory changes emerged as an independent risk factor for postoperative weight loss at one month in patients with gastric cancer following gastrectomy.


Assuntos
Transtornos do Olfato , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/complicações , Complicações Pós-Operatórias/etiologia , Gastrectomia/efeitos adversos , Redução de Peso , Estudos Retrospectivos
5.
Mol Metab ; 86: 101968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885788

RESUMO

The transcriptional coactivator PGC-1α has been implicated in the regulation of multiple metabolic processes. However, the previously reported metabolic phenotypes of mice deficient in PGC-1α have been inconsistent. PGC-1α exists as multiple isoforms, including variants transcribed from an alternative first exon. We show here that alternative PGC-1α variants are the main entity that increases PGC-1α during exercise. These variants, unlike the canonical isoform of PGC-1α, are robustly upregulated in human skeletal muscle after exercise. Furthermore, the extent of this upregulation correlates with oxygen consumption. Mice lacking these variants manifest impaired energy expenditure during exercise, leading to the development of obesity and hyperinsulinemia. The alternative variants are also upregulated in brown adipose tissue in response to cold exposure, and mice lacking these variants are intolerant of a cold environment. Our findings thus indicate that an increase in PGC-1α expression, attributable mostly to upregulation of alternative variants, is pivotal for adaptive enhancement of energy expenditure and heat production and thereby essential for the regulation of whole-body energy metabolism.


Assuntos
Tecido Adiposo Marrom , Processamento Alternativo , Metabolismo Energético , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Metabolismo Energético/genética , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Humanos , Camundongos , Processamento Alternativo/genética , Masculino , Músculo Esquelético/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Obesidade/metabolismo , Obesidade/genética , Termogênese/genética , Consumo de Oxigênio , Exercício Físico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Adulto , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA