RESUMO
BACKGROUND AND PURPOSE: Light amplification by stimulated emission of radiation (laser) systems operating in the so-called "eye safe" region are gaining widespread use in industry, medicine, and military applications. This research effort was geared to study the effects of laser tissue interaction on human skin by using in vivo porcine skin as an animal model. The goals of the study were to determine the median effective dose (ED50) for 1540-nm laser exposures, to evaluate the Yorkshire pig and the Yucatan mini-pig as animal models for laser exposure, and to characterize laser-induced skin lesions histologically. METHODS: A 1540-nm wavelength laser was used to expose multiple sites on the flanks of 10 pigs, using 0.8-ms pulses, ranging from 7 to 96 joules (J)/cm2. Single pulses were delivered to the flank of Yorkshire and Yucatan pigs in a grid pattern. Exposure sites were evaluated immediately after exposure and at 1 hour and 24 hours for presence of gross lesions. Representative biopsy specimens were collected from lesion sites for histologic evaluation at the 24-hour endpoint. RESULTS: The ED50 for the two breeds differed in the amount of energy required to induce dermal lesions. Grossly, lesions in each breed were well demarcated and pale gray to brightly erythematous. Microscopically, lesions had epidermal layer damage as cellular swelling and nuclear pyknosis, loss of cellular detail, and coagulation necrosis at the dermal layer. CONCLUSIONS: Findings suggest the presence of a different mechanism of laser-tissue damage in these two breeds. Photo-thermal mechanism appears to induce the skin lesions in the Yorkshire pig, whereas photo-thermal and photochemical mechanisms appear to be involved in lesion formation in the Yucatan mini-pig. All data obtained in this study will become part of database used by the American National Standards Institute (ANSI) to recommend laser safety standards for the occupational health and safety programs (OHSP), which will be used by industry and the military to base and update their current OHSP.