Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(2): 103898, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38188538

RESUMO

Seahorses, part of the small marine teleost fish family Syngnathidae, are increasingly under threat due to habitat degradation and overfishing. Notably used in traditional Chinese medicine, these fish have demonstrated significant pharmacological and cosmetic properties. In Morocco, however, seahorses are minimally exploited. This study aims to explore the biodiversity of Moroccan seahorses, focusing on identifying species from the Atlantic and Mediterranean coasts both morphologically and molecularly, and evaluating their antioxidant activity. The research involved collecting 62 dried seahorses from local fishermen. These specimens were subjected to detailed morphological and molecular identification through the DNA barcoding method, concentrating on the mitochondrial marker Cytochrome Oxidase I (COI) gene. Following DNA extraction and amplification, the sequences were analyzed for species identification and phylogenetic relationships. Additionally, the antioxidant activities of the seahorses were quantified using assays such as ABTS, reducing power, phosphomolybdenum, and ß-carotene-linoleic acid. The combined morphological and molecular analyses consistently identified all specimens as Hippocampus hippocampus, and phylogenetic trees suggested a close relation with European and Turkish counterparts. Furthermore, the antioxidant assays revealed significant activity, with the ABTS assay showing an IC50 of 14.571 mg/mL ± 0.334, and the ß-carotene-linoleic acid assay showing an IC50 of 1.273 mg/mL ± 0.166. The reducing power and phosphomolybdenum assays recorded EC50 values of 1.868 mg/mL ± 0.033 and 1.156 mg/mL ± 0.112, respectively. These results confirm the high antioxidant potential of Moroccan seahorses, suggesting their therapeutic value and necessitating measures for their biodiversity preservation at a national level.

2.
Bioinform Biol Insights ; 16: 11779322221115665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958296

RESUMO

Inflammatory bowel diseases are caused by an abnormal reaction of the immune system, which becomes hyperactive because the mechanisms responsible for regulating it get out of control. For an effective immune response, many proinflammatory cytokines are secreted, particularly interleukin-6 (IL-6) keystone cytokine inflammation. Many synthetic and natural compounds targeting IL-6 have been studied. The genus Satureja of the Lamiaceae family is generally known for its many virtues, in particular anti-inflammatory properties. However, the mechanism of action is unclear. This study aims to predict the impact of characterized bioactive molecules of Moroccan Satureja nepeta in the potential control of inflammatory response mediated by IL-6 cytokine. A list of 9 previously characterized natural compounds of S. nepeta was compiled, and a list of 6 potential protein targets involved in intestinal inflammation was made. The 2 lists of natural compound-target proteins were analyzed by the STITCH software (http://stitch.embl.de/) to develop protein-compound and protein-protein interaction networks (PPINs). An ontological enrichment (GO) analysis was performed by the Clue GO plugin to evaluate the PPIN generated by STITCH; finally, the molecular docking to predict the mode underlying the anti-inflammatory effects. STITCH results revealed direct and indirect interactions of S. nepeta chemical compounds with a key protein target IL-6. The array results by ClueGO showed that most compounds involved in the regulation of several biological processes related to IL-6 such as inflammation apoptosis, cell differentiation, and metabolic regulation. The targets directly related to IL-6 have been used for molecular docking. Quercetin, catechin, and gallic acid have a strong affinity with the IL-6 receptor (respectively -7.1; -6.1; -5.3). This study strongly suggests that the bioactive compounds of S. nepeta could constitute a new therapeutic alternative in the treatment of diseases related to IL-6. However, to validate the results obtained in this work, it is necessary to explore the mechanism of action of potential bioactive molecules by experimentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA