Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885378

RESUMO

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Assuntos
Evolução Molecular , Filogenia , Transaminases , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Domínio Catalítico/genética , Nitrogênio/metabolismo
2.
J Lipid Res ; 61(12): 1617-1628, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32848049

RESUMO

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin's anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antituberculosos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sinvastatina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
PLoS Pathog ; 14(8): e1007223, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30161232

RESUMO

Foam cells are lipid-laden macrophages that contribute to the inflammation and tissue damage associated with many chronic inflammatory disorders. Although foam cell biogenesis has been extensively studied in atherosclerosis, how these cells form during a chronic infectious disease such as tuberculosis is unknown. Here we report that, unlike the cholesterol-laden cells of atherosclerosis, foam cells in tuberculous lung lesions accumulate triglycerides. Consequently, the biogenesis of foam cells varies with the underlying disease. In vitro mechanistic studies showed that triglyceride accumulation in human macrophages infected with Mycobacterium tuberculosis is mediated by TNF receptor signaling through downstream activation of the caspase cascade and the mammalian target of rapamycin complex 1 (mTORC1). These features are distinct from the known biogenesis of atherogenic foam cells and establish a new paradigm for non-atherogenic foam cell formation. Moreover, they reveal novel targets for disease-specific pharmacological interventions against maladaptive macrophage responses.


Assuntos
Aterosclerose/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Metabolismo dos Lipídeos/fisiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Animais , Aterosclerose/metabolismo , Callithrix , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Coelhos
4.
J Immunol ; 193(1): 30-34, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24899504

RESUMO

Vitamin D has long been linked to resistance to tuberculosis, an infectious respiratory disease that is increasingly hard to treat because of multidrug resistance. Previous work established that vitamin D induces macrophage antimicrobial functions against Mycobacterium tuberculosis. In this article, we report a novel, metabolic role for vitamin D in tuberculosis identified through integrated transcriptome and mechanistic studies. Transcriptome analysis revealed an association between vitamin D receptor (VDR) and lipid metabolism in human tuberculosis and infected macrophages. Vitamin D treatment of infected macrophages abrogated infection-induced accumulation of lipid droplets, which are required for intracellular M. tuberculosis growth. Additional transcriptomics results showed that vitamin D downregulates the proadipogenic peroxisome proliferator-activated receptor γ (PPARγ) in infected macrophages. PPARγ agonists reversed the antiadipogenic and the antimicrobial effects of VDR, indicating a link between VDR and PPARγ signaling in regulating both vitamin D functions. These findings suggest the potential for host-based, adjunct antituberculosis therapy targeting lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Transcriptoma/efeitos dos fármacos , Tuberculose/imunologia , Vitamina D/farmacologia , Vitaminas/farmacologia , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos/imunologia , PPAR gama/imunologia , Receptores de Calcitriol/imunologia , Transcriptoma/imunologia , Tuberculose/tratamento farmacológico , Tuberculose/patologia
5.
J Infect Dis ; 211 Suppl 2: S50-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25765106

RESUMO

Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings.


Assuntos
Antituberculosos/farmacologia , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Genótipo , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
6.
J Immunol ; 190(6): 2747-55, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23378427

RESUMO

Mycobacterium tuberculosis infection alters macrophage gene expression and macrophage response to IFN-γ, a critical host defense cytokine. However, regulation of these changes is poorly understood. We report discordance of changes in nascent transcript and total nuclear RNA abundance for the transcription factors STAT1 and IRF1, together with lack of effect on their RNA half-lives, in human THP-1 cells infected with M. tuberculosis and stimulated with IFN-γ. The results indicate that negative postinitiation regulation of mRNA biogenesis limits the expression of these factors, which mediate host defense against M. tuberculosis through the cellular response to IFN-γ. Consistent with the results for STAT1 and IRF1, transcriptome analysis reveals downregulation of postinitiation mRNA biogenesis processes and pathways by infection, with and without IFN-γ stimulation. Clinical relevance for regulation of postinitiation mRNA biogenesis is demonstrated by studies of donor samples showing that postinitiation mRNA biogenesis pathways are repressed in latent tuberculosis infection compared with cured disease and in active tuberculosis compared with ongoing treatment or with latent tuberculosis. For active disease and latent infection donors from two populations (London, U.K., and The Gambia), each analyzed using a different platform, pathway-related gene expression differences were highly correlated, demonstrating substantial specificity in the effect. Collectively, the molecular and bioinformatic analyses point toward downregulation of postinitiation mRNA biogenesis pathways as a means by which M. tuberculosis infection limits expression of immunologically essential transcription factors. Thus, negative regulation of postinitiation mRNA biogenesis can constrain the macrophage response to infection and overall host defense against tuberculosis.


Assuntos
Regulação para Baixo/imunologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Linhagem Celular , Regulação para Baixo/genética , Humanos , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Interferon gama/fisiologia , Tuberculose Latente/genética , Tuberculose Latente/imunologia , Tuberculose Latente/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Mycobacterium tuberculosis/imunologia , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologia , Tuberculose Pulmonar/metabolismo
7.
Thorax ; 69(6): 565-573, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24464743

RESUMO

BACKGROUND: CpG-containing oligodeoxynucleotides (CpG-ODNs) are potent inhibitors of T helper 2 mediated allergic airway disease in sensitised mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. OBJECTIVE: To optimise the treatment regimen for sustained efficacy and to determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. METHODS: We set up a chronic allergic-asthma model using ragweed-sensitised mice exposed weekly to intranasal ragweed. Using this model, the effects of a limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were evaluated during treatment and for several weeks after treatments had stopped but weekly allergen exposures continued. Treatment efficacy was evaluated by measuring effects on lung T helper 2 cytokines and eosinophilia, and lung dendritic cell function and T-cell responses. RESULTS: Twelve intranasal 1018 ISS treatments induced significant suppression of bronchoalveolar lavage eosinophilia and interleukin 4, 5 and 13 levels. This suppression of allergic T helper 2 parameters was maintained through 13 weekly ragweed exposures administered after treatment cessation. Subsequent experiments demonstrated that at least five treatments were required for lasting suppression. Although CpG-ODN induced moderate T helper 1 responses, suppression of allergic airway disease did not require interferon γ but was associated with induction of a regulatory T-cell response. CONCLUSIONS: A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen.


Assuntos
Pulmão/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Hipersensibilidade Respiratória/prevenção & controle , Células Th2/efeitos dos fármacos , Alérgenos , Ambrosia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade Respiratória/imunologia , Células Th2/citologia , Células Th2/imunologia
8.
Proc Natl Acad Sci U S A ; 107(33): 14703-8, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20668240

RESUMO

Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host-pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Proteoma/imunologia , Tuberculose/imunologia , Anticorpos Antibacterianos/sangue , Formação de Anticorpos/imunologia , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/análise , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteoma/análise , Proteômica , Tuberculose/sangue , Tuberculose/microbiologia
9.
J Infect Dis ; 206(5): 697-705, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732925

RESUMO

BACKGROUND: Biomarkers of progression from latent Mycobacterium tuberculosis infection to active tuberculosis are needed. We assessed correlations between infection outcome and antibody responses in macaques and humans by high-throughput, proteome-scale serological studies. METHODS: Mycobacterium tuberculosis proteome microarrays were probed with serial sera from macaques representing various infection outcomes and with single-point human sera from tuberculosis suspects. Fluorescence intensity data were analyzed by calculating Z scores and associated P values. Temporal changes in macaque antibody responses were analyzed by polynomial regression. Correlations between human responses and sputum bacillary burden were assessed by quantile and hurdle regression. RESULTS: Macaque outcome groups exhibited distinct antibody profiles: early, transient responses in latent infection and stable antibody increase in active and reactivation disease. In humans, antibody levels and reactive protein numbers increased with bacillary burden. Responses to a subset of 10 proteins were more tightly associated with disease state than reactivity to the broader reactive proteome. CONCLUSIONS: Integration of macaque and human data reveals dynamic properties of antibody responses in relation to outcome and leads to actionable findings for translational research. These include the potential of antibody responses to detect acute infection and preclinical tuberculosis and to identify serodiagnostic proteins for the spectrum of bacillary burden in tuberculosis.


Assuntos
Anticorpos Antibacterianos/biossíntese , Doenças dos Macacos/imunologia , Doenças dos Macacos/microbiologia , Mycobacterium tuberculosis/imunologia , Proteoma/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto , Animais , Anticorpos Antibacterianos/sangue , Biomarcadores/sangue , Humanos , Macaca fascicularis , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteômica/métodos , Análise de Regressão , Estudos Retrospectivos
10.
J Appl Lab Med ; 7(2): 515-531, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849992

RESUMO

BACKGROUND: Noninvasive prenatal testing (NIPT) of chromosomal aneuploidies based on next-generation sequencing (NGS) analysis of fetal DNA in maternal plasma is well established, but testing for autosomal recessive disorders remains challenging. NGS libraries prepared by probe capture facilitate the analysis of the short DNA fragments plasma. This system has been applied to the ß-hemoglobinopathies to reduce the risk to the fetus. METHOD: Our probe panel captures >4 kb of the HBB region and 435 single-nucleotide polymorphisms (SNPs) used to estimate fetal fraction. Contrived mixtures of DNA samples, plasma, and whole blood samples from 7 pregnant women with ß-thalassemia or sickle cell anemia mutations and samples from the father, sibling, and baby or chorionic villus were analyzed. The fetal genotypes, including point mutations and deletions, were inferred by comparing the observed and expected plasma sequence read ratios, based on fetal fraction, at the mutation site and linked SNPs. Accuracy was increased by removing PCR duplicates and by in silico size selection of plasma sequence reads. A probability was assigned to each of the potential fetal genotypes using a statistical model for the experimental variation, and thresholds were established for assigning clinical status. RESULTS: Using in silico size selection of plasma sequence files, the predicted clinical fetal genotype assignments were correct in 9 of 10 plasma libraries with maternal point mutations, with 1 inconclusive result. For 2 additional plasmas with deletions, the most probable fetal genotype was correct. The ß-globin haplotype determined from linked SNPs, when available, was used to infer the fetal genotype at the mutation site. CONCLUSION: This probe capture NGS assay demonstrates the potential of NIPT for ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , DNA/análise , DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez , Talassemia beta/diagnóstico , Talassemia beta/genética
11.
J Interferon Cytokine Res ; 28(5): 317-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18547162

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Interferon-beta (IFN-beta) therapy for MS is hypothesized to cause short-term and long-term changes in gene expression that shift the inflammation from Th1 to Th2. In vivo gene induction to define kinetics of response to IFN-beta therapy in a large cohort of MS patients is described. Differential gene expression in peripheral blood mononuclear cells (PBMCs) obtained from relapsing-remitting MS patients (RRMS) was assessed using high content microarrays. Rapid onset of gene expression appeared within 4 h of subcutaneous IFN-beta administration, returning to baseline levels at 42 h in clinically stable RRMS. IFN-beta therapy in vivo rapidly but transiently induced strong upregulation of genes mediating immune modulation, IFN signaling, and antiviral responses. RT-PCR showed significant patient-to-patient variation in the magnitude of expression of multiple genes, especially for IFN-beta-inducible genes, such as MxA, IRF7, and CCL8, a Th1 product. Variation among patients in IFN-beta-induced RNA transcription was not explained by neutralizing antibodies or IFN receptor expression. Surprisingly, genes regulated in vivo by IFN-beta therapy do not support a simple Th1 to Th2 shift. A complex interplay between both proinflammatory and anti-inflammatory immune regulatory genes is likely to act in concert in the treatment of RRMS.


Assuntos
Anticorpos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon beta/farmacologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Receptores de Interferon/genética , Adulto , Feminino , Citometria de Fluxo , Genes Reporter , Humanos , Inflamação/genética , Interferon beta/administração & dosagem , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Testes de Neutralização , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interferon/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
J Neuroimmunol ; 195(1-2): 116-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18279974

RESUMO

The molecular mechanism by which interferon beta (IFN-beta) is effective in treating multiple sclerosis is not well understood. Mononuclear cells from therapy-naïve MS patients, IFN-beta-1b-treated MS patients, and healthy controls were analyzed to examine mRNA changes that characterize both the disease and its treatment. The scientific literature was comprehensively searched for all protein-protein interactions. In MS patients who had never been treated with IFN-beta, statistical analysis revealed coordinate changes in mRNA expression for proteins reported in the literature as "regulated by IFN-beta." As a positive control for this approach, samples from a separate MS patient cohort showed significant change of these same genes during in vivo treatment with IFN-beta-1b.The strength of effect observed for regulation by IFN-beta was greater than for IFN-alpha, IFN-gamma (Th1), or IL-4 (Th2). Of the sets we investigated, the most strongly affected by disease was the subset defined by regulation by both IFN-beta and IFN-alpha. Changes in cells from therapy-naïve MS patients thus anticipated the importance of IFN-beta in therapy. These findings are a significant step towards marrying MS disease etiology and IFN-beta mechanism of action at a molecular level.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interferon beta/farmacologia , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos de Coortes , Feminino , Humanos , Interferon beta/uso terapêutico , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Miastenia Gravis , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Tempo
13.
J Biomol Screen ; 10(2): 157-67, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15799959

RESUMO

Effector functions and proliferation of T helper (Th) cells are influenced by cytokines in the environment. Th1 cells respond to a synergistic effect of interleukin-12 (IL-12) and interleukin-18 (IL-18) to secrete interferon-gamma (IFN-gamma). In contrast, Th2 cells respond to interleukin-4 (IL-4) to secrete IL-4, interleukin-13 (IL-13), interleukin-5 (IL-5), and interleukin-10 (IL-10). The authors were interested in identifying nonpeptide inhibitors of the Th1 response selective for the IL-12/IL-18-mediated secretion of IFN-gamma while leaving the IL-4-mediated Th2 cytokine secretion relatively intact. The authors established a screening protocol using human peripheral blood mononuclear cells (PBMCs) and identified the hydrazino anthranilate compound 1 as a potent inhibitor of IL-12/IL-18-mediated IFN-gamma secretion from CD3(+) cells with an IC(50) around 200 nM. The inhibitor was specific because it had virtually no effect on IL-4-mediated IL-13 release from the same population of cells. Further work established that compound 1 was a potent intracellular iron chelator that inhibited both IL-12/IL-18- and IL-4-mediated T cell proliferation. Iron chelation affects multiple cellular pathways in T cells. Thus, the IL-12/IL-18-mediated proliferation and IFN-gamma secretion are very sensitive to intracellular iron concentration. However, the IL-4-mediated IL-13 secretion does not correlate with proliferation and is partially resistant to potent iron chelation.


Assuntos
Citocinas/metabolismo , Íons/química , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Estrutura Molecular , NF-kappa B/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Sci Rep ; 5: 18176, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658723

RESUMO

To elucidate the little-known bioenergetic pathways of host immune cells in tuberculosis, a granulomatous disease caused by the intracellular pathogen Mycobacterium tuberculosis, we characterized infected murine lung tissue by transcriptomic profiling and confocal imaging. Transcriptomic analysis revealed changes of host energy metabolism during the course of infection that are characterized by upregulation of key glycolytic enzymes and transporters for glucose uptake, and downregulation of enzymes participating in the tricarboxylic acid cycle and oxidative phosphorylation. Consistent with elevated glycolysis, we also observed upregulation of a transporter for lactate secretion and a V type H(+) -ATPase involved in cytosolic pH homeostasis. Transcription profiling results were corroborated by immunofluorescence microscopy showing increased expression of key glycolytic enzymes in macrophages and T cells in granulomatous lesions. Moreover, we found increased mRNA and protein levels in macrophages and T cells of hypoxia inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a master transcriptional regulator. Thus, our findings suggest that immune cells predominantly utilize aerobic glycolysis in response to M. tuberculosis infection. This bioenergetic shift is similar to the Warburg effect, the metabolic signature of cancer cells. Finding immunometabolic changes during M. tuberculosis infection opens the way to new strategies for immunotherapy against tuberculosis.


Assuntos
Pulmão/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Animais , Biomarcadores , Ciclo do Ácido Cítrico , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise , Homeostase , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas , Camundongos , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/metabolismo , Transcriptoma , Tuberculose Pulmonar/microbiologia
15.
Tuberculosis (Edinb) ; 95(5): 570-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26190839

RESUMO

A major hurdle facing tuberculosis (TB) investigators who want to utilize a rapidly growing body of data from both systems biology approaches and omics technologies is the lack of a standard vocabulary for data annotation and reporting. Lacking a means to readily compare samples from different research groups, a significant quantity of potentially informative data is largely ignored by researchers. To facilitate standardizing data across studies, a simple ontology of TB terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address animal models and experimental systems, and existing clinically focused terminology was modified and adapted. This ontology can be used to annotate host TB data in public databases and collaborations, thereby standardizing database searches and allowing researchers to more easily compare results. To demonstrate the utility of a standard TB ontology for host systems biology, a web application was developed to annotate and compare human and animal model gene expression data sets.


Assuntos
Bases de Dados Genéticas/normas , Perfilação da Expressão Gênica/normas , Ontologia Genética , Mycobacterium tuberculosis/genética , Biologia de Sistemas/normas , Terminologia como Assunto , Transcriptoma , Tuberculose/genética , Animais , Regulação da Expressão Gênica , Marcadores Genéticos , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
16.
PLoS One ; 8(8): e72392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009678

RESUMO

Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin(+) dendritic cells are tolerogenic while thrombomodulin(-) dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived dendritic cells were treated with soluble thrombomodulin and expression of surface markers was determined. Treatment with thrombomodulin reduces the expression of maturation markers and increases the expression of TM on the DC surface. Thrombomodulin treated and control dendritic cells were sorted into thrombomodulin(+) and thrombomodulin(-) dendritic cells before their mRNA was analyzed by microarray. mRNAs encoding pro-inflammatory genes and dendritic cells maturation markers were reduced while expression of cell cycle genes were increased in thrombomodulin-treated and thrombomodulin(+) dendritic cells compared to control dendritic cells and thrombomodulin(-) dendritic cells. Thrombomodulin-treated and thrombomodulin(+) dendritic cells had higher expression of 15-lipoxygenase suggesting increased synthesis of lipoxins. Thrombomodulin(+) dendritic cells produced more lipoxins than thrombomodulin(-) dendritic cells, as measured by ELISA, confirming that this pathway was upregulated. There was more phosphorylation of several cell cycle kinases in thrombomodulin(+) dendritic cells while phosphorylation of kinases involved with pro-inflammatory cytokine signaling was reduced. Cultures of thrombomodulin(+) dendritic cells contained more cells actively dividing than those of thrombomodulin(-) dendritic cells. Production of IL-10 is increased in thrombomodulin(+) dendritic cells. Antagonism of IL-10 with a neutralizing antibody inhibited the effects of thrombomodulin treatment of dendritic cells suggesting a mechanistic role for IL-10. The surface of thrombomodulin(+) dendritic cells supported activation of protein C and procarboxypeptidase B2 in a thrombomodulin-dependent manner. Thus thrombomodulin treatment increases the number of thrombomodulin(+) dendritic cells, which have significantly altered gene expression compared to thrombomodulin(-) dendritic cells in key immune function pathways.


Assuntos
Antígenos de Superfície/genética , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Trombomodulina/genética , Animais , Antígenos de Superfície/metabolismo , Ácido Araquidônico/metabolismo , Biomarcadores/metabolismo , Carboxipeptidase B2/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Análise por Conglomerados , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Hemostasia/genética , Humanos , Imunofenotipagem , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/antagonistas & inibidores , Redes e Vias Metabólicas , Camundongos , MicroRNAs/genética , Fosforilação , Ligação Proteica , Proteína C/metabolismo , Trombomodulina/metabolismo
17.
Expert Opin Ther Targets ; 5(5): 613-623, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12540287

RESUMO

The biology and therapeutic application of somatostatin and its receptors are reviewed. The focus is on recent literature and patents, especially with regard to the specific function of each somatostatin receptor subtype. Detailed mechanisms mediating the effects of somatostatin and its analogues remain to be elucidated. Nevertheless, progress is being made towards a clear picture of the cellular signalling and physiological changes regulated by somatostatin and its receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA