Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271816

RESUMO

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , DNA/genética , DNA/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética
2.
EMBO J ; 36(23): 3532-3547, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074626

RESUMO

R-loops, formed by co-transcriptional DNA-RNA hybrids and a displaced DNA single strand (ssDNA), fulfill certain positive regulatory roles but are also a source of genomic instability. One key cellular mechanism to prevent R-loop accumulation centers on the conserved THO/TREX complex, an RNA-binding factor involved in transcription elongation and RNA export that contributes to messenger ribonucleoprotein (mRNP) assembly, but whose precise function is still unclear. To understand how THO restrains harmful R-loops, we searched for new THO-interacting factors. We found that human THO interacts with the Sin3A histone deacetylase complex to suppress co-transcriptional R-loops, DNA damage, and replication impairment. Functional analyses show that histone hypo-acetylation prevents accumulation of harmful R-loops and RNA-mediated genomic instability. Diminished histone deacetylase activity in THO- and Sin3A-depleted cell lines correlates with increased R-loop formation, genomic instability, and replication fork stalling. Our study thus uncovers physical and functional crosstalk between RNA-binding factors and chromatin modifiers with a major role in preventing R-loop formation and RNA-mediated genome instability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Modelos Biológicos , RNA/química , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-32493765

RESUMO

Different proteins associate with the nascent RNA and the RNA polymerase (RNAP) to catalyze the transcription cycle and RNA export. If these processes are not properly controlled, the nascent RNA can thread back and hybridize to the DNA template forming R-loops capable of stalling replication, leading to DNA breaks. Given the transcriptional promiscuity of the genome, which leads to large amounts of RNAs from mRNAs to different types of ncRNAs, these can become a major threat to genome integrity if they form R-loops. Consequently, cells have evolved nuclear factors to prevent this phenomenon that includes THO, a conserved eukaryotic complex acting in transcription elongation and RNA processing and export that upon inactivation causes genome instability linked to R-loop accumulation. We revise and discuss here the biological relevance of THO and a number of RNA helicases, including the THO partner UAP56/DDX39B, as a paradigm of the cellular mechanisms of cotranscriptional R-loop prevention.

4.
Cell Rep ; 28(6): 1551-1563.e7, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390568

RESUMO

THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Instabilidade Genômica , Estruturas R-Loop , Fatores de Processamento de RNA/metabolismo , Processamento Alternativo , Ciclo Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA