Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
2.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
3.
Nature ; 607(7917): 111-118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732736

RESUMO

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Assuntos
Vias Biossintéticas , Microbiota , Oceanos e Mares , Bactérias/classificação , Bactérias/genética , Vias Biossintéticas/genética , Genômica , Microbiota/genética , Família Multigênica/genética , Filogenia
4.
PLoS Biol ; 21(8): e3002253, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651408

RESUMO

Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.


Assuntos
Microbiota , Salmonella typhimurium , Animais , Camundongos , Virulência/genética , Salmonella typhimurium/genética , Fatores de Virulência/genética , Inflamação
5.
Bioinformatics ; 38(1): 270-272, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34260698

RESUMO

Profiling the taxonomic composition of microbial communities commonly involves the classification of ribosomal RNA gene fragments. As a trade-off to maintain high classification accuracy, existing tools are typically limited to the genus level. Here, we present mTAGs, a taxonomic profiling tool that implements the alignment of metagenomic sequencing reads to degenerate consensus reference sequences of small subunit ribosomal RNA genes. It uses DNA fragments, that is, paired-end sequencing reads, as count units and provides relative abundance profiles at multiple taxonomic ranks, including operational taxonomic units based on a 97% sequence identity cutoff. At the genus rank, mTAGs outperformed other tools across several metrics, such as the F1 score by >11% across data from different environments, and achieved competitive (F1 score) or better results (Bray-Curtis dissimilarity) at the sub-genus level. AVAILABILITY AND IMPLEMENTATION: The software tool mTAGs is implemented in Python. The source code and binaries are freely available (https://github.com/SushiLab/mTAGs). The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.4352762. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Software , Genes de RNAr , Consenso , Análise de Sequência de DNA/métodos , Microbiota/genética
6.
BMC Microbiol ; 20(1): 207, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660423

RESUMO

BACKGROUND: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. RESULTS: The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. CONCLUSIONS: Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Regiões Árticas , Oceano Atlântico , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Processos Heterotróficos , Oceano Índico , Mar Mediterrâneo , Oceano Pacífico , Filogenia , Filogeografia , Microbiologia da Água
7.
Mol Ecol ; 29(10): 1820-1838, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323882

RESUMO

Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200-1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.


Assuntos
Plâncton , Água do Mar , Oceano Atlântico , Cilióforos , Dinoflagellida , Oceano Índico , Oceano Pacífico , Plâncton/genética , RNA Ribossômico 16S/genética
8.
Environ Microbiol ; 17(10): 3557-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890225

RESUMO

Catalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH) is a powerful approach to quantify bacterial taxa. In this study, we compare the performance of the widely used Bacteroidetes CF319a probe with the new CF968 probe. In silico analyses and tests with isolates demonstrate that CF319a hybridizes with non-Bacteroidetes sequences from the Rhodobacteraceae and Alteromonadaceae families. We test the probes' accuracy in 37 globally distributed marine samples and over two consecutive years at the Blanes Bay Microbial Observatory (NW Mediterranean). We also compared the CARD-FISH data with the Bacteroidetes 16S rRNA gene sequences retrieved from 27 marine metagenomes from the TARA Oceans expedition. We find no significant differences in abundances between both approaches, although CF319a targeted some unspecific sequences and both probes displayed different abundances of specific Bacteroidetes phylotypes. Our results demonstrate that quantitative estimations by using both probes are significantly different in certain oceanographic regions (Mediterranean Sea, Red Sea and Arabian Sea) and that CF968 shows seasonality within marine Bacteroidetes, notably large differences between summer and winter that is overlooked by CF319a. We propose CF968 as an alternative to CF319a for targeting the whole Bacteroidetes phylum since it has better coverage, greater specificity and overall better quantifies marine Bacteroidetes.


Assuntos
Bacteroidetes/classificação , Sondas de DNA/genética , DNA Bacteriano/genética , Hibridização in Situ Fluorescente/métodos , Alteromonadaceae/genética , Bacteroidetes/genética , Mar Mediterrâneo , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Estações do Ano , Água do Mar/microbiologia , Análise de Sequência de DNA
9.
Mol Ecol ; 24(22): 5692-706, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26462173

RESUMO

The free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 µm) and PA (0.8-20 µm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2150-4000 m depth) using high-throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny, suggesting that the deep-ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary timescale. As a consequence, PA and FL communities had clear alpha- and beta-diversity differences that exceeded the global-scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association with particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.


Assuntos
Archaea/genética , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Filogenia , Archaea/classificação , Archaea/fisiologia , Bactérias/classificação , DNA Arqueal/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Microbiologia da Água
10.
Environ Microbiol ; 16(9): 2953-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24131493

RESUMO

The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.


Assuntos
Proteínas de Bactérias/genética , Bacterioclorofila A/isolamento & purificação , Gammaproteobacteria/classificação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Estações do Ano , Água do Mar/microbiologia , Baías/microbiologia , DNA Bacteriano/genética , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Luz , Mar Mediterrâneo , Processos Fototróficos , Água do Mar/química , Análise de Sequência de DNA , Temperatura
11.
Environ Microbiol ; 16(9): 2659-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24102695

RESUMO

Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.


Assuntos
DNA Ribossômico/genética , Metagenoma , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Archaea/genética , Bactérias/genética , Primers do DNA/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
12.
Nat Commun ; 15(1): 2557, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519488

RESUMO

Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.


Assuntos
Inoculantes Agrícolas , Microbiota , Solo , Bactérias/genética , Proliferação de Células , Microbiologia do Solo
13.
Sci Data ; 11(1): 154, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302528

RESUMO

The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean. Here we present a dataset of 76 microbial metagenomes (MProfile) of the picoplankton size fraction (0.2-3.0 µm) collected in 11 vertical profiles covering contrasting ocean regions sampled during the Malaspina Expedition circumnavigation (7 depths, from surface to 4,000 m deep). The MProfile dataset produced 1.66 Tbp of raw DNA sequences from which we derived: 17.4 million genes clustered at 95% sequence similarity (M-GeneDB-VP), 2,672 metagenome-assembled genomes (MAGs) of Archaea and Bacteria (Malaspina-VP-MAGs), and over 100,000 viral genomic sequences. This dataset will be a valuable resource for exploring the functional and taxonomic connectivity between the photic and bathypelagic tropical and sub-tropical ocean, while increasing our general knowledge of the Ocean microbiome.


Assuntos
Metagenoma , Plâncton , Archaea/genética , Bactérias/genética , Oceanos e Mares , Plâncton/genética
14.
ISME Commun ; 3(1): 92, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660234

RESUMO

Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.

15.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264002

RESUMO

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , Plâncton
16.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264015

RESUMO

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de Corais
17.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
18.
Science ; 376(6589): 156-162, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389782

RESUMO

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Assuntos
Genoma Viral , Vírus de RNA , Vírus , Evolução Biológica , Ecossistema , Oceanos e Mares , Filogenia , RNA , Vírus de RNA/genética , Viroma/genética , Vírus/genética
19.
Genome Biol ; 22(1): 93, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785070

RESUMO

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Metagenoma , Metagenômica/métodos , Microbiota , Software , Fatores de Confusão Epidemiológicos , Doença de Crohn/etiologia , Bases de Dados Genéticas , Microbioma Gastrointestinal , Humanos , Metanálise como Assunto , Modelos Estatísticos , Curva ROC , Fluxo de Trabalho
20.
Nat Microbiol ; 6(12): 1561-1574, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782724

RESUMO

The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.


Assuntos
Archaea/genética , Bactérias/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , Regiões Árticas , Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Genoma Arqueal , Genoma Bacteriano , Metagenoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA