Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 36(9): 1430-1440, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761600

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.


Assuntos
Medula Óssea/metabolismo , Retinopatia Diabética/induzido quimicamente , Peptidil Dipeptidase A/efeitos adversos , Peptidil Dipeptidase A/deficiência , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Camundongos
2.
Am J Pathol ; 187(6): 1426-1435, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432873

RESUMO

The brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Neointima/patologia , Traumatismo por Reperfusão/metabolismo , Vasos Retinianos/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Capilares/patologia , Proliferação de Células , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Artéria Femoral/lesões , Artéria Femoral/patologia , Deleção de Genes , Células-Tronco Hematopoéticas/patologia , Hiperplasia , Antígenos Comuns de Leucócito/análise , Contagem de Leucócitos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/patologia , Retina/metabolismo , Vasos Retinianos/patologia
3.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
4.
PLoS One ; 14(3): e0212642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870461

RESUMO

Previously, we showed that mesenchymal stem cells (MSC) can be mobilized into peripheral blood using electroacupuncture (EA) at acupoints, LI-4, LI-11, GV-14, and GV-20. The purpose of this study was to determine whether EA-mobilized MSC could be harvested and expanded in vitro to be used as an autologous cell therapy in horses. Peripheral blood mononuclear cells (PBMC) isolated from young and aged lame horses (n = 29) showed a marked enrichment for MSCs. MSC were expanded in vitro (n = 25) and administered intravenously at a dose of 50 x 106 (n = 24). Treatment resulted in significant improvement in lameness as assessed by the American Association of Equine Practitioners (AAEP) lameness scale (n = 23). MSCs exhibited immunomodulatory function by inhibition of lymphocyte proliferation and induction of IL-10. Intradermal testing showed no immediate or delayed immune reactions to MSC (1 x 106 to 1 x 104). In this study, we demonstrated an efficient, safe and reproducible method to mobilize and expand, in vitro, MSCs in sufficiently high concentrations for therapeutic administration. We confirm the immunomodulatory function of these cells in vitro. This non-pharmacological and non-surgical strategy for stem cell harvest has a broad range of biomedical applications and represents an improved clinically translatable and economical cell source for humans.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Proliferação de Células , Separação Celular , Cavalos , Linfócitos/citologia , Linfócitos/imunologia , Células-Tronco Mesenquimais/citologia , Transplante Autólogo
5.
J Mol Med (Berl) ; 94(11): 1255-1265, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27344677

RESUMO

In this study, the role of CX3CR1 in the progression of diabetic retinopathy (DR) was investigated. The retinas of wild-type (WT), CX3CR1 null (CX3CR1gfp/gfp, KO), and heterozygous (CX3CR1+/gfp, Het) mice were compared in the presence and absence of streptozotocin (STZ)-induced diabetes. CX3CR1 deficiency in STZ-KO increased vascular pathology at 4 months of diabetes, as a significant increase in acellular capillaries was observed only in the STZ-KO group. CX3CR1 deficiency and diabetes had similar effects on retinal neurodegeneration measured by an increase in DNA fragmentation. Retinal vascular pathology in STZ-KO mice was associated with increased numbers of monocyte-derived macrophages in the retina. Furthermore, compared to STZ-WT, STZ-KO mice exhibited increased numbers of inflammatory monocytes in the bone marrow and impaired homing of monocytes to the spleen. The induction of retinal IL-10 expression by diabetes was significantly less in KO mice, and when bone marrow-derived macrophages from KO mice were maintained in high glucose, they expressed significantly less IL-10 and more TNF-α in response to LPS stimulation. These findings support that CX3CR1 deficiency accelerates the development of vascular pathology in DR through increased recruitment of proinflammatory myeloid cells that demonstrate reduced expression of anti-inflammatory IL-10. KEY MESSAGES: • CX3CR1 deletion in STZ-diabetic mice accelerated the onset of diabetic retinopathy (DR). • The early onset of DR was associated with increased retinal cell apoptosis. • The early onset of DR was associated with increased recruitment of bone marrow-derived macrophages to the retina. • Bone marrow-derived macrophages from CX3CR1 KO diabetic mice expressed more TNF-α and less IL-10. • The role of IL-10 in protection from progression of DR is highlighted.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Animais , Apoptose , Peso Corporal , Células da Medula Óssea/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Hemoglobinas Glicadas/metabolismo , Homeostase , Hipotálamo/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células Mieloides/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo , Retina/patologia , Estreptozocina
6.
PLoS One ; 8(11): e80029, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244599

RESUMO

Dysregulation of circadian rhythmicity is identified as a key factor in disease pathogenesis. Circadian rhythmicity is controlled at both a transcriptional and post-transcriptional level suggesting the role of microRNA (miRNA) and double-stranded RNA (dsRNA) in this process. Endonuclease Dicer controls miRNA and dsRNA processing, however the role of Dicer in circadian regulation is not known. Here we demonstrate robust diurnal oscillations of Dicer expression in central and peripheral clock control systems including suprachiasmatic nucleolus (SCN), retina, liver, and bone marrow (BM). The Dicer oscillations were either reduced or phase shifted with aging and Type 2 diabetes. The decrease and phase shift of Dicer expression was associated with a similar decrease and phase shift of miRNAs 146a and 125a-5p and with an increase in toxic Alu RNA. Restoring Dicer levels and the diurnal patterns of Dicer-controlled miRNA and RNA expression may provide new therapeutic strategies for metabolic disease and aging-associated complications.


Assuntos
Envelhecimento/genética , RNA Helicases DEAD-box/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , RNA Mensageiro/genética , Ribonuclease III/genética , Adulto , Idoso , Envelhecimento/metabolismo , Envelhecimento/patologia , Elementos Alu/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Ritmo Circadiano/genética , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Retina/metabolismo , Retina/patologia , Ribonuclease III/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA