RESUMO
This work describes a novel sensing system using eggshells as substrate for the first time, targeting the detection and semiquantitative determination of antibiotics in waters from aquaculture, enabling simple, inexpensive, and in situ drug monitoring. Eggshell was ground and the resulting powder was modified by adsorption of suitable reagents, and it takes a typical colour after contact with the antibiotic. The colour intensity is correlated with the concentration of the antibiotic. This novel approach was applied to oxytetracycline, one of the antibiotics commonly used in aquaculture. The chemical changes on the eggshell powder were evaluated and optimised to produce an intense colour change as a function of the concentration of the antibiotic. The colour changes were evaluated by visual comparison with images taken with a digital camera, applying an appropriate mathematical treatment to the colour coordinates of the HSL system used by Windows. The selectivity of the response was tested against other antibiotic drugs. The materials were also used in the analysis of a spiked environmental water sample. Overall, this work presents a rapid, inexpensive, simple and equipment-free method for screening and discrimination of tetracycline drugs in aquaculture. The method is a green approach by reusing eggshells and decreasing the level of contamination correlated to analytical methods, thus being a promising tool for local, rapid, and cost-effective antibiotic monitoring.
Assuntos
Oxitetraciclina , Animais , Antibacterianos/análise , Aquicultura , Casca de Ovo/química , Casca de Ovo/fisiologia , PósRESUMO
Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.
RESUMO
This research work presents, for the first time, a screen-printed electrode (SPE) made on a PCB board with silver tracks (Ag) and a three electrode configuration (AgxO-working, AgxO-counter and Ag/AgxO-reference electrodes), following the same approach as printed-circuit boards (PCBs). This low cost and disposable device was tested for screening a cancer biomarker in point-of-care. The selected biomarker was carcinogenic embryonic antigen (CEA) protein, routinely used to follow-up the progression of specific cancer diseases. The biosensor was constructed by assembling a plastic antibody on the Ag-working electrode area, acting as the biorecognition element of the device. The protein molecules that were entrapped on the polymer and positioned at the outer surface of the polypyrrole (PPy) film were removed by protease action. The imprinting effect was tested by preparing non-imprinted (NPPy) material, including only PPy as biorecognition element. Infrared and Raman studies confirmed the surface modification of these electrodes. The ability of the sensing material to rebind CEA was measured by several electrochemical techniques: cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV). The linear response ranged from 0.05 to 1.25 pg/mL against logarithm concentration. Overall, producing screen-printed electrodes by means of conventional PCB technology showed promising features, mostly regarding cost and prompt availability. The plastic antibody-based biosensor also seems to be a promising tool for screening CEA in point-of-care, with low response time, low cost, good sensitivity and high stability.
RESUMO
This works presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl)trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6×10-5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.
RESUMO
A state-of-the-art, ultrasensitive, paper-based SERS sensor has been developed using silver nanostars (AgNSs) in combination with synthetic and natural antibodies. A key component of this innovative sensor is the plastic antibody, which was synthesized using molecularly imprinted polymer (MIP) technology. This ground-breaking combination of paper substrates/MIPs with AgNSs, which is similar to a sandwich immunoassay, is used for the first time with the aim of SERS detection and specifically targets nucleolin (NCL), a cancer biomarker. The sensor device was carefully fabricated by synthesizing a polyacrylamide-based MIP on cellulose paper (Whatman Grade 1 filter) by photopolymerization. The binding of NCL to the MIP was then confirmed by natural antibody binding using a sandwich assay for quantitative SERS analysis. To facilitate the detection of NCL, antibodies were pre-bound to AgNSs with a Raman tag so that the SERS signal could indicate the presence of NCL. The composition of the sensory layers/materials was meticulously optimized. The intensity of the Raman signal at â¼1078 cm-1 showed a linear trend that correlated with increasing concentrations of NCL, ranging from 0.1 to 1000 nmol L-1, with a limit of detection down to 0.068 nmol L-1 in human serum. The selectivity of the sensor was confirmed by testing its analytical response in the presence of cystatin C and lysozyme. The paper-based SERS detection system for NCL is characterized by its simplicity, sustainability, high sensitivity and stability and thus embodies essential properties for point-of-care applications. This approach is promising for expansion to other biomarkers in various fields, depending on the availability of synthetic and natural antibodies.
Assuntos
Anticorpos , Nucleolina , Papel , Fosfoproteínas , Proteínas de Ligação a RNA , Prata , Análise Espectral Raman , Prata/química , Fosfoproteínas/imunologia , Humanos , Proteínas de Ligação a RNA/imunologia , Anticorpos/química , Anticorpos/imunologia , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Polímeros Molecularmente Impressos/químicaRESUMO
This work describes first a 5-stack direct methanol fuel cell (DMFC) based on poly(3,4-ethylenedioxythiophene)-modified paper (PEDOT/PB-DMFC), which acts as an energy source and biosensor, coupled to an electrochromic cell (EC). It is autonomous and monitors the biosensor response by color change, as appropriate for point-of-care (POC) applications. In detail, DMFC strips were developed from square Whatman paper, and the EC was made on baking paper treated with polydimethylsiloxane (PDMS). The PEDOT/PB-DMFCs operate in a passive mode with a few microliters of diluted methanol. The biosensor layer was obtained on the anode ink (a composite of EDOT, oxidized multiwalled carbon nanotubes, and carbon black with platinum and ruthenium) by electropolymerizing 3,4-ethylenedioxythiophene (EDOT), in situ, in the presence of L1CAM. Each PEDOT/PB-DMFC single cell generates a voltage in the range of 0.3-0.35 V depending on the cell, and a five-cell stack delivers a 1.5-1.6 V voltage range when fed with 0.5 M methanol. The fabricated PEDOT/PB-DMFC/biosensor was calibrated against L1CAM, showing linear responses from 1.0 × 10-12 to 1.0 × 10-8 M with a detection limit of 1.17 × 10-13 M (single cell mode). When the EC was connected to the PEDOT/PB-DMFC device, a color gradient was observed. Overall, this work opens horizons to the use of biosensors even in places with energy scarcity and offers an alternative to reducing the current energy demand.
RESUMO
An early diagnosis is the gold standard for cancer survival. Biosensors have proven their effectiveness in monitoring cancer biomarkers but are still limited to a series of requirements. This work proposes an integrated power solution, with an autonomous and self-signaling biosensing device. The biorecognition element is produced in situ by molecular imprinting to detect sarcosine, a known biomarker for prostate cancer. The biosensor was assembled on the counter-electrode of a dye-sensitized solar cell (DSSC), simultaneously using EDOT and Pyrrole as monomers for the biomimetic process and the catalytic reduction of triiodide in the DSSC. After the rebinding assays, the hybrid DSSC/biosensor displayed a linear behavior when plotting the power conversion efficiency (PCE) and the charge transfer resistance (RCT) against the logarithm of the concentration of sarcosine. The latter obtained a sensitivity of 0.468 Ω/decade of sarcosine concentration, with a linear range between 1 ng/mL and 10 µg/mL, and a limit of detection of 0.32 ng/mL. When interfacing an electrochromic cell, consisting of a PEDOT-based material, with the hybrid device, a color gradient between 1 ng/mL and 10 µg/mL of sarcosine was observed. Thus, the device can be used anywhere with access to a light source, completely equipment-free, suitable for point-of-care analysis and capable of detecting sarcosine within a range of clinical interest.
Assuntos
Técnicas Biossensoriais , Sarcosina , Masculino , Humanos , Sarcosina/análise , Técnicas Eletroquímicas , Limite de Detecção , Biomarcadores Tumorais , CorantesRESUMO
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol-Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol-Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol-gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 × 10(-10) M, corresponding to 0.75 µg L(-1). It showed linear responses in the range of 7.7 × 10(-10) to 1.9 × 10(-9) M of MC-LR (corresponding to 0.77-2.00 µg L(-1)), thus including the limiting value for MC-LR in waters (1.0 µg L(-1)). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl(-)) showed limited interference while aluminium (Al(3+)), ammonium (NH(4)(+)), magnesium (Mg(2+)), manganese (Mn(2+)), sodium (Na(+)), and sulfate (SO(4)(2-)) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Assuntos
Técnicas Eletroquímicas , Géis/química , Microcistinas/análise , Cloreto de Polivinila/química , Água/química , Carbono/química , Eletrodos , Concentração de Íons de Hidrogênio , Toxinas Marinhas , Metais/química , Impressão MolecularRESUMO
Accurate and timely diagnosis of venous thromboembolism (VTE) is crucial to prevent related morbidity and mortality. This work reports a label-free sensor for D-dimer, a biomarker of VTE. The sensor is based on the synergy between the colloidal crystal templating method and the molecular imprinting technique. The design of the photonic molecularly imprinted polymer (PMIP) is focused on the preparation of an inverse opal structure, resulting from silica infiltration in a poly(methyl methacrylate) photonic crystal template, followed by a calcination stage that removes the sacrificial colloidal crystal. The molecularly imprinted polymer in the inverse opal structure is then synthesized in the presence of the template molecule, the peptide D-dimer. After D-Dimer removal, the PMIP consists in a three-dimensional highly ordered structure, where nanocavities complementary to the D-dimer in shape and binding features are distributed. The PMIP showed a linear response to D-dimer in synthetic urine, exhibiting a decrease in the reflectance intensity with increasing D-dimer concentrations, ranging from 22.5 ng mL-1 to 1450.0 ng mL-1. The PMIP material demonstrated a limit of detection of 15.5 ng mL-1 and was selective for D-dimer in the presence of fibrinopeptide B, another prospective VTE biomarker in urine. Moreover, the sensor was reusable up to five times without losing its recognition ability. Overall, a novel PMIP material is described for successful recognition of D-Dimer. Considering the clinical relevance of D-dimer detection, the sensor is envisioned as a promising low-cost test for urinalysis.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Produtos de Degradação da Fibrina e do Fibrinogênio , Impressão Molecular/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Estudos ProspectivosRESUMO
This work presents a novel cellulose-based aptasensor for the colorimetric detection of a cancer biomarker, osteopontin (OPN), in point-of-care (PoC) analysis. For this purpose, the cellulose paper was chemically modified with (mercaptopropyl)methyldimetoxisilane to attach the thiolated aptamer, which acts as a biological detection layer. The surface modification was checked by Fourier transform infrared spectroscopy and thermogravimetric analysis. Colorimetric detection was performed using a conventional staining solution, Bradford reagent. The color analysis was performed by evaluating the RGB coordinates provided by the ImageJ program from the photographs taken with a smartphone. Overall, the biosensor shows good sensitivity with a wide linear range (R > 0.998) of 5-1000 ng/mL and a detection limit lower than 5 ng/mL in buffer and commercial human serum solution, after 30 min of incubation. In addition, this aptasensor shows good selectivity to some interfering species such as bovine serum albumin and recombinant OPN. Analytical data obtained from spiked serum samples confirm the accuracy of the method. Importantly, it is a broad-spectrum method that tends to meet the criteria of REASSURED (real-time connectivity, ease of sampling, affordability, specificity, ease of use, speed and robustness, device freedom, and deliverability) for global testing.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Celulose , Colorimetria/métodos , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , OsteopontinaRESUMO
An innovative approach for monitoring astringent polyphenols in beverages (wines) is described, consisting of an electrochemical biosensor constructed by adsorbing salivary α-amylase or proline-rich protein (PRP) onto amined gold screen-printed electrodes. Interaction with polyphenols was tested using pentagalloyl glucose (PGG) as a standard, an important representative element for astringency. The analytical properties of the resulting biosensors were evaluated by electrochemical impedance spectroscopy at different pHs. The PRP-biosensor was able to bind to PGG with higher sensitivity, displaying lower limit of the linear range of 0.6 µM. Wine samples were tested to prove the concept and the concentrations obtained ranged from 0.17 to 4.7 µM, as expressed in PGG units. The effects of side-compounds on PRP and on α-amylase binding to PGG were tested (gallic acid, catechin, ethanol, glucose, fructose and glycerol) and considered negligible. Overall, concentrations > 1.0 µM in PGG units are signaling electrochemical impedance, providing a quantitative monitoring of astringent compounds.
Assuntos
Técnicas Biossensoriais , Vinho , Adstringentes , Técnicas Biossensoriais/métodos , Eletrodos , Desenho de Equipamento , Glucose , Polifenóis , Vinho/análiseRESUMO
Laser-induced graphene (LIG) has gained preponderance in recent years, as a very attractive material for the fabrication and patterning of graphitic structures and electrodes, for multiple applications in electronics. Typically, polymeric substrates, such as polyimide, have been used as precursor materials, but other organic, more sustainable, and accessible precursor materials have emerged as viable alternatives, including cellulose substrates. However, these substrates have lacked the conductive and chemical properties achieved by conventional LIG precursor substrates and have not been translated into fully flexible, wearable scenarios. In this work, we expand the conductive properties of paper-based LIG, by boosting the graphitization potential of paper, through the introduction of external aromatic moieties and meticulous control of laser fluence. Colored wax printing over the paper substrates introduces aromatic chemical structures, allowing for the synthesis of LIG chemical structures with sheet resistances as low as 5 Ω·sq-1, translating to an apparent conductivity as high as 28.2 S·cm-1. Regarding chemical properties, ID/IG ratios of 0.28 showcase low defect densities of LIG chemical structures and improve on previous reports on paper-based LIG, where sheet resistance has been limited to values around 30 Ω·sq-1, with more defect dense and less crystalline chemical structures. With these improved properties, a simple transfer methodology was developed, based on a water-induced peel-off process that efficiently separates patterned LIG structures from the native paper substrates to conformable, flexible substrates, harnessing the multifunctional capabilities of LIG toward multiple applications in wearable electronics. Proof-of concept electrodes for electrochemical sensors, strain sensors, and in-plane microsupercapacitors were patterned, transferred, and characterized, using paper as a high-value LIG precursor for multiples scenarios in wearable technologies, for improved sustainability and accessibility of such applications.
Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Eletrônica , Lasers , ÁguaRESUMO
BACKGROUND: Mindfulness-based interventions (MBIs) have been used in oncology contexts as a promising tool with numerous benefits for various health-related and psychosocial outcomes. Despite the increasing popularity of MBIs, few randomized controlled trials (RCTs) have examined their effects upon biological parameters. Specifically, no previous study has examined the effects of MBIs on extracellular vesicles (EVs), which are potentially important markers of health, disease, and stress. Moreover, the lack of RCTs is even more limited within the context of technology-mediated MBIs and long-term effects. METHODS: The current study protocol presents a two-arm, parallel, randomized controlled study investigating the effects of internet-supported mindfulness-based cognitive therapy (MBCT) compared with treatment as usual (TAU). Primary outcomes are psychological distress and EV cargo of distressed participants with previous breast, colorectal, or prostate cancer diagnoses. Secondary outcomes are self-reported psychosocial and health-related measures, and additional biological markers. Outcomes will be assessed at baseline, 4 weeks after baseline (mid-point of the intervention), 8 weeks after baseline (immediately post-intervention), 24 weeks after baseline (after booster sessions), and 52 weeks after baseline. Our goal is to recruit at least 111 participants who have been diagnosed with breast, prostate, or colorectal cancer (cancer stage I to III), are between 18 and 65 years old, and have had primary cancer treatments completed between 3 months and 5 years ago. Half of the participants will be randomized to the TAU group, and the other half will participate in an 8-week online MBCT intervention with weekly group sessions via videoconference. The intervention also includes asynchronous homework, an online retreat after the fifth week, and 4 monthly booster sessions after completion of the 8-week programme. DISCUSSION: This study will allow characterizing the effects of internet-based MBCT on psychosocial and biological indicators in the context of cancer. The effects on circulating EVs will also be investigated, as a possible neurobiological pathway underlying mind-body intervention effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT04727593 (date of registration: 27 January 2021; date of record verification: 6 October 2021).
Assuntos
Terapia Cognitivo-Comportamental , Vesículas Extracelulares , Intervenção Baseada em Internet , Atenção Plena , Neoplasias , Angústia Psicológica , Adolescente , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Adulto JovemRESUMO
This work presents an innovative ultra-sensitive biosensor having the Spike protein on carbon-based screen-printed electrodes (SPEs), for monitoring in point-of-care antibodies against SARS-CoV-2, a very important tool for epidemiological monitoring of COVID-19 infection and establishing vaccination schemes. In an innovative and simple approach, a highly conductive support is combined with the direct adsorption of Spike protein to enable an extensive antibody capture. The high conductivity was ensured by using carboxylated carbon nanotubes on the carbon electrode, by means of a simple and quick approach, which also increased the surface area. These were then modified with EDC/NHS chemistry to produce an amine layer and undergo Spike protein adsorption, to generate a stable layer capable of capturing the antibodies against SARS-CoV-2 in serum with great sensitivity. Electrochemical impedance spectroscopy was used to evaluate the analytical performance of this biosensor in serum. It displayed a linear response between 1.0 âpg/mL and 10 âng/mL, with a detection limit of â¼0.7 âpg/mL. The analysis of human positive sera containing antibody in a wide range of concentrations yielded accurate data, correlating well with the reference method. It also offered the unique ability of discriminating antibody concentrations in sera below 2.3 âµg/mL, the lowest value detected by the commercial method. In addition, a proof-of-concept study was performed by labelling anti-IgG antibodies with quantum dots to explore a new electrochemical readout based on the signal generated upon binding to the anti-S protein antibodies recognised on the surface of the biosensor. Overall, the alternative serologic assay presented is a promising tool for assessing protective immunity to SARS-CoV-2 and a potential guide for revaccination.
RESUMO
This work reports the simple and inexpensive fabrication of homemade paper-based carbon-printed electrodes (HP C-PEs), aiming to produce an alternative way to generate electrochemical biosensors to all and promoting their wide use. This is especially important in times of pandemics, considering the excellent features of electrochemical biosensing, which may ensure portability, low-cost and quick responses. HP C-PEs were fabricated using a standard cellulose filter paper that was first modified with wax, to make it hydrophobic. Then, the electrodes were manually printed on top of this cellulose/wax substrate. The electrodes were designed by having standard configurations for potentiometric and electrochemical readings, combining two or three electrodes. In general, both electrode systems showed excellent electrochemical and mechanical features, which were better in specific cases than commercial devices. The 3-electrode system displayed high current levels with low peak-to-peak potential separation, yielding highly stable signals after consecutive electrode bending that corresponded to high active areas. The possibility of modifying the devices with polymers produced in-situ was also explored and proven successful, providing also advantageous features when compared to other devices. The 2-electrode system was also proven highly stable and capable of subsequent use in potentiometric sensing development. Overall, the fabrication process of the 2- and 3-electode systems described herein may be employed in laboratories to produce successful electrochemical biosensors, with the final devices displaying excellent electrochemical and mechanical features. This procedure offers the advantages of being simple and inexpensive, when compared to other commercial devices, while using materials that are promptly available and that may undergo a worldwide use.
RESUMO
This work reports the design of a novel plastic antibody for cystatin C (Cys-C), an acute kidney injury biomarker, and its application in point-of-care (PoC) testing. The synthetic antibody was obtained by tailoring a molecularly imprinted polymer (MIP) on a carbon screen-printed electrode (SPE). The MIP was obtained by electropolymerizing pyrrole (Py) with carboxylated Py (Py-COOH) in the presence of Cys-C and multiwall carbon nanotubes (MWCNTs). Cys-C was removed from the molecularly imprinted poly(Py) matrix (MPPy) by urea treatment. As a control, a non-imprinted poly(Py) matrix (NPPy) was obtained by the same procedure, but without Cys-C. The assembly of the MIP material was evaluated in situ by Raman spectroscopy and the binding ability of Cys-C was evaluated by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) electrochemical techniques. The MIP sensor responses were measured by the DPV anodic peaks obtained in the presence of ferro/ferricyanide. The peak currents decreased linearly from 0.5 to 20.0 ng/mL of Cys-C at each 20 min successive incubation and a limit of detection below 0.5 ng/mL was obtained at pH 6.0. The MPPy/SPE was used to analyze Cys-C in spiked serum samples, showing recoveries <3%. This device showed promising features in terms of simplicity, cost and sensitivity for acute kidney injury diagnosis at the point of care.
Assuntos
Técnicas Biossensoriais , Cistatina C/análise , Nanotubos de Carbono/química , Polímeros/química , Pirróis/química , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção , Impressão Molecular , PlásticosRESUMO
This work describes an electrochemical sensor with a biomimetic plastic antibody film for carcinoembryonic antigen (CEA, an important biomarker in colorectal cancer), integrated in the electrical circuit of a direct methanol fuel cell (DMFC), working in passive mode and used herein as power supply and signal transducer. In detail, the sensing layer for CEA consisted of a Fluorine-doped Tin Oxide (FTO) conductive glass substrate - connected to the negative pole side of the DMFC - with a conductive poly (3,4-ethylenedioxythiophene) (PEDOT) layer and a polypyrrol (PPy) molecularly-imprinted polymer (MIP), assembled in-situ. This sensing element is then closed using a cover FTO-glass, hold in place with a clip, connected to the positive side of the DMFC. When compared with control DMFCs, the power curves of DMFC/Sensor integrated system showed decreased power values due to the MIP layer interfaced in the electrical circuit, also displaying high stability signals. The DMFC/Sensor was further calibrated at room temperature, in different medium (buffer, a synthetic physiological fluid model and Cormay® serum), showing linear responses over a wide concentration range, with a limit of detection of 0.08 ng/mL. The DMFC/Sensor presented sensitive data, with linear responses from 0.1 ng/mL to 100 µg/mL and operating well in the presence of human serum. Overall, the results obtained evidenced the possibility of using a DMFC as a transducing element in an electrochemical sensor, confirming the sensitive and selective readings of the bio (sensing) imprinted film. This integration paves the way towards fully autonomous electrochemical devices, in which the integration of the sensor inside the fuel cell may be a subsequent direction.
Assuntos
Técnicas Biossensoriais , Impressão Molecular , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Metanol , TransdutoresRESUMO
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
RESUMO
Biological systems possess nanoarchitectures that have evolved for specific purposes and whose ability to modulate the flow of light creates an extraordinary diversity of natural photonic structures. In particular, the striking beauty of the structural colouration observed in nature has inspired technological innovation in many fields. Intense research has been devoted to mimicking the unique vivid colours with newly designed photonic structures presenting stimuli-responsive properties, with remarkable applications in health care, safety and security. This review highlights bioinspired photonic approaches in this context, starting by presenting many appealing examples of structural colours in nature, followed by describing the versatility of fabrication methods and designed coloured structures. A particular focus is given to optical sensing for medical diagnosis, food control and environmental monitoring, which has experienced a significant growth, especially considering the advances in obtaining inexpensive miniaturized systems, more reliability, fast responses, and the use of label-free layouts. Additionally, naturally derived biomaterials and synthetic polymers are versatile and fit many different structural designs that are underlined. Progress in bioinspired photonic polymers and their integration in novel devices is discussed since recent developments have emerged to lift the expectations of smart, flexible, wearable and portable sensors. The discussion is expanded to give emphasis on additional functionalities offered to related biomedical applications and the use of structural colours in new sustainable strategies that could meet the needs of technological development.
RESUMO
Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people worldwide. Currently, an easy and effective form of diagnosis is missing, which significantly hinders a possible improvement of the patient's quality of life. In this context, biosensors emerge as a future solution, opening the doors for preventive medicine and allowing the premature diagnosis of numerous pathologies. This work presents a pioneering biosensor that combines a bottom-up design approach using paper as a platform for the electrochemical recognition of peptide amyloid ß-42 (Aß-42), a biomarker for AD present in blood, associated with visible differences in the brain tissue and responsible for the formation of senile plaques. The sensor layer relies on a molecularly imprinted polymer as a biorecognition element, created on the carbon ink electrode's surface by electropolymerizing a mixture of the target analyte (Aß-42) and a monomer (O-phenylenediamine) at neutral pH 7.2. Next, the template molecule was removed from the polymeric network by enzymatic and acidic treatments. The vacant sites so obtained preserved the shape of the imprinted protein and were able to rebind the target analyte. Morphological and chemical analyses were performed in order to control the surface modification of the materials. The analytical performance of the biosensor was evaluated by an electroanalytical technique, namely, square wave voltammetry. For this purpose, the analytical response of the biosensor was tested with standard solutions ranging from 0.1 ng/mL to 1 µg/mL of Aß-42. The linear response of the biosensor went down to 0.1 ng/mL. Overall, the developed biosensor offered numerous benefits, such as simplicity, low cost, reproducibility, fast response, and repeatability less than 10%. All together, these features may have a strong impact in the early detection of AD.