Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag ; 186: 280-292, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954920

RESUMO

This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.


Assuntos
Furaldeído , Micro-Ondas , Prunus dulcis , Vinho , Furaldeído/análogos & derivados , Vinho/análise , Prunus dulcis/química , Biocombustíveis/análise , Vitis , Lignina/química , Óleos de Plantas/química , Catálise , Cloreto de Alumínio , Olea/química
2.
Foods ; 13(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39456295

RESUMO

Edible Insects (EIs) are an alternative source of bioactive compounds such as proteins or fatty acids and micronutrients as vitamins or minerals, thus showing potential to replace traditional foodstuffs in an economical and environmentally friendly way. Nonetheless, EIs can accumulate hazardous chemicals such as mycotoxins and heavy metals. The aim of the present study is to determine mycotoxins and heavy metal content in raw insect samples and those resulting products obtained after supercritical fluid extraction (SFE). Insect samples included Acheta domesticus (cricket) meal, Tenebrio molitor (mealworm) meal, Alphitobius diaperinus (buffalo worm), and Locusta migratoria (locust). For this purpose, a QuEChERS method followed by LC-MS/MS analysis was optimized with good results for the analysis of mycotoxins, principally Aflatoxins (AFs), Ochratoxin A (OTA), and Enniatins (ENNs). In contrast, heavy metals (As, Cd, Hg, Pb) were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results obtained revealed that Locust was positive for AFG2 at a level of 115.5 µg/kg, and mealworm was only contaminated with OTA at 58.1 µg/kg. Emerging mycotoxins (ENNA, ENNA1, ENNB, and ENNB1) were detected at lower levels < 2.2 µg/Kg. Concerning heavy metals, limits exceeding regulation were detected for Cd in the insect species studied, with levels up to 219 µg/kg, and for Pb in crickets (100.3 µg/kg). Finally, the analysis of the post-extraction solids after SFE processing revealed that heavy metals remained in the resulting SFE cakes, while mycotoxins were detected at negligible levels (up to 1.3 µg/Kg).

3.
Int J Biol Macromol ; 237: 124149, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965554

RESUMO

The circular economy considers waste to be a new raw material for the development of value-added products. In this context, agroindustrial lignocellulosic waste represents an outstanding source of new materials and platform chemicals, such as levulinic acid (LA). Herein we study the microwave (MW)-assisted acidic conversion of microcrystalline cellulose (MCC) into LA. The influence of acidic catalysts, inorganic salt addition and ball-milling pre-treatment of MCC on LA yield was assessed. Depolymerization and disruption of cellulose was monitored by FTIR, TGA and SEM, whereas the products formed were analyzed by HPLC and NMR spectroscopy. The parameters that afforded the highest LA yield (48 %, 100 % selectivity) were: ball-milling pre-treatment of MCC for 16 min at 600 rpm, followed by MW-assisted thermochemical treatment for 20 min at 190 °C, aqueous p-toluenesulfonic acid (p-TSA) 0.25 M as catalyst and saturation with KBr. These optimal conditions were further applied to a lignocellulosic feedstock, namely melon rind, to afford a 51 % yield of LA. These results corroborate the suitability of this method to obtain LA from agroindustrial wastes, in line with a circular economy-based approach.


Assuntos
Celulose , Micro-Ondas , Celulose/química , Ácidos Levulínicos/química , Ácidos
4.
Foods ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201157

RESUMO

The current levels of added sugars in processed foods impact dental health and contribute to a range of chronic non-communicable diseases, such as overweight, obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. This review presents sugars and sweeteners used in food processing, the current possibility to replace added sugars, and highlights the benefits of using dates as a new natural, nutritious and healthy alternative to synthetic and non-nutritive sweeteners. In the context of environmental sustainability, palm groves afford a propitious habitat for a diverse array of animal species and assume a pivotal social role by contributing to the provisioning of sustenance and livelihoods for local communities. The available literature shows the date as an alternative to added sugars due to its composition in macro and micronutrients, especially in bioactive components (fiber, polyphenols and minerals). Therefore, dates are presented as a health promoter and a preventative for certain diseases with the consequent added value. The use of damaged or unmarketable dates, due to its limited shelf life, can reduce losses and improve the sustainability of date palm cultivation. This review shows the potential use dates, date by-products and second quality dates as sugar substitutes in the production of sweet and healthier foods, in line with broader sustainability objectives and circular economy principles.

5.
Antioxidants (Basel) ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34829523

RESUMO

The table olive industry is producing a huge amount of wastewater, which is a post-processing cost and an environmental concern. The present study aims to valorize this processing by-product to obtain a value-added product, thereby enhancing resource efficiency and contributing to achieving sustainable development goals (SDGs). In this sense, a chemical reaction-based platform was developed to obtain valuable components, such as levulinic acid (LA) and 5-hydromethylfurfural (HMF). The products were then analyzed using NMR identification of the antioxidant phenolic fraction and microwave single-phase reaction of the sugary fraction. According to the results, the highest concentration of phenolic compounds does not correspond to the sample directly obtained from NaOH treatment (S1), indicating that water washing steps (S2-S5) are fundamental to recover phenolic substances. Moreover, glucose was presented in the sugary fraction that can be transformed into levulinic acid by a single-phase reaction under microwave irradiation. The information provided in this manuscript suggests that the wastewater from the olive processing industry can be valorized to obtain valuable products.

6.
ACS Chem Neurosci ; 10(6): 2703-2706, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30943011

RESUMO

We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 µM (86.2%), a result in good agreement with the observed strong hydroxyl radical scavenger of QN6.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Óxidos de Nitrogênio/farmacologia , Quinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA