Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263267

RESUMO

The type I interferon (IFN) system represents an essential innate immune response that renders cells resistant to virus growth via the molecular actions of IFN-induced effector proteins. IFN-mediated cellular states inhibit growth of numerous and diverse virus types, including those of known pathogenicity as well as potentially emerging agents. As such, targeted pharmacologic activation of the IFN response may represent a novel therapeutic strategy to prevent infection or spread of clinically impactful viruses. In light of this, we employed a high-throughput screen to identify small molecules capable of permeating the cell and of activating IFN-dependent signaling processes. Here we report the identification and characterization of N-(methylcarbamoyl)-2-{[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-2-phenylacetamide (referred to as C11), a novel compound capable of inducing IFN secretion from human cells. Using reverse genetics-based loss-of-function assays, we show that C11 activates the type I IFN response in a manner that requires the adaptor protein STING but not the alternative adaptors MAVS and TRIF. Importantly, treatment of cells with C11 generated a cellular state that potently blocked replication of multiple emerging alphavirus types, including chikungunya, Ross River, Venezuelan equine encephalitis, Mayaro, and O'nyong-nyong viruses. The antiviral effects of C11 were subsequently abrogated in cells lacking STING or the type I IFN receptor, indicating that they are mediated, at least predominantly, by way of STING-mediated IFN secretion and subsequent autocrine/paracrine signaling. This work also allowed characterization of differential antiviral roles of innate immune signaling adaptors and IFN-mediated responses and identified MAVS as being crucial to cellular resistance to alphavirus infection.IMPORTANCE Due to the increase in emerging arthropod-borne viruses, such as chikungunya virus, that lack FDA-approved therapeutics and vaccines, it is important to better understand the signaling pathways that lead to clearance of virus. Here we show that C11 treatment makes human cells refractory to replication of a number of these viruses, which supports its value in increasing our understanding of the immune response and viral pathogenesis required to establish host infection. We also show that C11 depends on signaling through STING to produce antiviral type I interferon, which further supports its potential as a therapeutic drug or research tool.


Assuntos
Alphavirus/metabolismo , Antivirais/farmacologia , Fibroblastos/metabolismo , Proteínas de Membrana/agonistas , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/genética
2.
PLoS Pathog ; 11(12): e1005324, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646986

RESUMO

Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/imunologia , Proteínas de Membrana/agonistas , Transdução de Sinais/imunologia , Tiazinas/farmacologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Animais , Células Cultivadas , Vírus Chikungunya/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
3.
J Virol ; 85(1): 606-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962078

RESUMO

Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-ß). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-ß and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus Chikungunya/patogenicidade , Regulação da Expressão Gênica , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Biossíntese de Proteínas/imunologia , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Células Cultivadas , Vírus Chikungunya/imunologia , Cricetinae , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Interferon beta , Proteínas/genética , Proteínas/metabolismo
4.
J Virol ; 84(1): 585-98, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846511

RESUMO

Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family that, unlike other herpesviruses, triggers a strong innate immune response in infected cells that includes transcription of the beta interferon gene via activation of interferon regulatory factor 3 (IRF3). IRF3 activation requires signaling from pattern recognition receptors that is initiated by their interaction with specific pathogen-associated molecules. However, while IRF3-activating pathways are increasingly well characterized, the cellular molecules involved in HCMV-mediated IRF3-dependent beta interferon transcription are virtually unknown. We undertook a systematic examination of new and established IRF3-terminal pathway components to identify those that are essential to HCMV-triggered IRF3 activation. We show here that IRF3 activation induced by HCMV infection involves the newly identified protein STING but, in contrast to infections with other herpesviruses, occurs independently of the adaptor molecule IPS-1. We also show that the protein DDX3 contributes to HCMV-triggered expression of beta interferon. Moreover, we identify Z-DNA binding protein 1 (ZBP1) as being essential for IRF3 activation and interferon beta expression triggered by HCMV, as well as being sufficient to enhance HCMV-stimulated beta interferon transcription and secretion. ZBP1 transcription was also found to be induced following exposure to HCMV in a JAK/STAT-dependent manner, thus perhaps also contributing to a positive feedback signal. Finally, we show that constitutive overexpression of ZBP1 inhibits HCMV replication. ZBP1 was recently identified as a cytosolic pattern recognition receptor of double-stranded DNA, and thus, we propose a model for HCMV-mediated IRF3 activation that involves HCMV-associated DNA as the principal innate immune-activating pathogen-associated molecular pattern.


Assuntos
Citomegalovirus/imunologia , Proteínas de Ligação a DNA/fisiologia , Interferon beta/genética , Células Cultivadas , RNA Helicases DEAD-box , DNA , Fibroblastos/virologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana , Proteínas de Ligação a RNA , Transcrição Gênica , Ativação Transcricional
5.
J Virol ; 84(17): 8913-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573816

RESUMO

In vitro infection of cells with the betaherpesvirus human cytomegalovirus (HCMV) stimulates an innate immune response characterized by phosphorylation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent expression of IRF3-dependent genes. While previous work suggests that HCMV envelope glycoprotein B is responsible for initiating this reaction, the signaling pathways stimulated by virus infection that lead to IRF3 phosphorylation have largely been uncharacterized. Recently, we identified Z DNA binding protein 1 (ZBP1), a sensor of cytoplasmic DNA, as an essential protein for this response. We now describe a human fibroblast cell line exhibiting a recessive defect that results in the absence of activation of IRF3 following treatment with HCMV but not Sendai virus or double-stranded RNA. In addition, we show that while exposure of these cells to soluble HCMV glycoprotein B is capable of triggering IRF3-dependent gene transcription, transfection of the cells with double-stranded DNA is not. Furthermore, we show that overexpression of ZBP1 in these cells reestablishes their ability to secrete interferon in response to HCMV and that multiple ZBP1 transcriptional variants exist in both wild-type and mutant cells. These results have two major implications for the understanding of innate immune stimulation by HCMV. First, they demonstrate that HCMV glycoprotein B is not the essential molecular pattern that induces an IRF3-dependent innate immune response. Second, IRF3-terminal signaling triggered by HCMV particles closely resembles that which is activated by cytoplasmic double-stranded DNA.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citoplasma/imunologia , DNA/imunologia , Interferon beta/imunologia , Proteínas do Envelope Viral/imunologia , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citoplasma/genética , Citoplasma/virologia , DNA/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fosforilação , Transporte Proteico , Proteínas do Envelope Viral/genética
6.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
7.
mBio ; 8(3)2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465426

RESUMO

The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/agonistas , Antivirais/farmacologia , Benzopiranos/farmacologia , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Tiadiazóis/farmacologia , Replicação Viral , Zika virus/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antivirais/química , Antivirais/isolamento & purificação , Benzopiranos/química , Benzopiranos/isolamento & purificação , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Citocinas/biossíntese , Replicação do DNA/efeitos dos fármacos , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Descoberta de Drogas , Edição de Genes , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tiadiazóis/química , Tiadiazóis/isolamento & purificação , Zika virus/efeitos dos fármacos
8.
Mol Cancer Res ; 3(9): 511-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16179498

RESUMO

To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p21 , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Ácidos Linoleicos/metabolismo , Inibidores de Lipoxigenase/farmacologia , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Células Tumorais Cultivadas
9.
Mol Cancer Ther ; 4(3): 487-93, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15767558

RESUMO

Although the chemopreventive and antitumorigenic activities of nonsteroidal anti-inflammatory drug (NSAID) against colorectal cancer are well established, the molecular mechanisms responsible for these properties in ovarian cancer have not been elucidated. Therefore, there is an urgent need to develop mechanism-based approaches for the management of ovarian cancer. To this end, the effect of several NSAIDs on ovarian cancer cells was investigated as assessed by the induction of NAG-1/MIC-1/GDF-15, a proapoptotic gene belonging to the transforming growth factor-beta superfamily. Sulindac sulfide was the most significant NSAID activated gene 1 (NAG-1) inducer and its expression was inversely associated with cell viability as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. This growth suppression by sulindac sulfide was recovered by transfection of NAG-1 small interfering RNA. These results indicate that NAG-1 is one of the genes responsible for growth suppression by sulindac sulfide. Furthermore, we observed down-regulation of p21 WAF1/CIP1 by introduction of NAG-1 small interfering RNA into sulindac sulfide-treated cells. In addition, to elucidate other potential molecular mechanisms involved in sulindac sulfide treatment of ovarian cancer cells, we did a membrane-based microarray experiment. We found that cyclin D1, MMP-1, PI3KR1, and uPA were down-regulated by sulindac sulfide. In conclusion, a novel molecular mechanism is proposed to explain the experimental results and provide a rationale for the chemopreventive activity of NSAIDs in ovarian cancer.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Neoplasias Ovarianas/metabolismo , Sulindaco/análogos & derivados , Sulindaco/farmacologia , Apoptose , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes/farmacologia , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Citocinas/metabolismo , Regulação para Baixo , Feminino , Fator 15 de Diferenciação de Crescimento , Humanos , Luciferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/tratamento farmacológico , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Regulação para Cima
10.
J Pharmacol Exp Ther ; 318(2): 899-906, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16714403

RESUMO

A common in vitro response for many chemopreventive and antitumor agents, including some cyclooxygenase inhibitors, is the increased expression of nonsteroidal anti-inflammatory drug-activated gene (NAG)-1/macrophage inhibitory cytokine (MIC)-1/prostate-derived factor (PDF). The experimental anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F203) was a potent inducer of NAG-1 expression, and in MCF-7 cells, it inhibited cell growth and induced apoptosis. NAG-1 small interfering RNA blocked NAG-1 expression and 5F203-induced apoptosis in MCF-7 cells, indicating that NAG-1 may mediate the apoptosis and anticancer activity. One mechanism by which 5F203 increases NAG-1 expression is by increasing the stability of NAG-1 mRNA, dependent of de novo protein synthesis. Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was increased by 5F203, and inhibition of ERK1/2 phosphorylation abolished the induction of NAG-1 protein expression and increased the stability of NAG-1 mRNA. Thus, 5F203 regulates NAG-1 expression by a unique mechanism compared with other drugs. A mouse orthotopic mammary tumor model was used to determine whether 5F203 increased NAG-1 expression in vivo and suppressed tumor growth. Treatment of the mice with Phortress, the prodrug of 5F203, increased the in vivo expression of NAG-1 as measured by real-time reverse transcription-polymerase chain reaction from RNA obtained by needle biopsy, and the expression correlated with a reduction of tumor volume. These results confirm that NAG-1 suppresses tumor growth, and its in vivo expression can be controlled by treating mice with anticancer drugs, such as Phortress. Drugs that target NAG-1 could lead to a unique strategy for the development of chemotherapeutic and chemopreventive agents.


Assuntos
Antineoplásicos/farmacologia , Citocinas/biossíntese , Expressão Gênica/efeitos dos fármacos , Fatores Supressores Imunológicos/biossíntese , Tiazóis/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloeximida/farmacologia , Citocinas/genética , Dactinomicina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fator 15 de Diferenciação de Crescimento , Humanos , Camundongos , Transplante de Neoplasias , Fosforilação , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/farmacologia , Fatores Supressores Imunológicos/genética , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos
11.
J Biol Chem ; 280(5): 3564-73, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15537633

RESUMO

Eukaryotic type IA topoisomerases are important for the normal function of the cell, and in some cases essential for the organism, although their role in DNA metabolism remains to be elucidated. In this study, we cloned Drosophila melanogaster topoisomerase (topo) IIIalpha from an embryonic cDNA library and expressed and purified the protein to >95% homogeneity. This enzyme partially relaxes a hypernegatively supercoiled plasmid substrate consistent with other purified topo IIIs. A novel, covalently closed bubble substrate was prepared for this study, which topo IIIalpha fully relaxed, regardless of the handedness of the supercoils. Experiments with the bubble substrate demonstrate that topo IIIalpha has much different reaction preferences from those obtained by plasmid substrate-based assays. This is presumably due to the fact that solution conditions can affect the structure of plasmid based substrates and therefore their suitability as a substrate. A mutant allele of the Top3alpha gene, Top3alpha191, was isolated through imprecise excision mutagenesis of an existing P-element inserted in the first intron of the gene. Top3alpha191 is recessive lethal, with most of the homozygous individuals surviving to pupation but never emerging to adulthood. Whereas this mutation can be rescued by a Top3alpha transgene, ubiquitous overexpression of D. melanogaster topo IIIbeta cannot rescue this allele.


Assuntos
DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Soluções Tampão , Clonagem Molecular , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Genes Letais , Magnésio , Fenótipo , Plasmídeos/metabolismo , Pupa/fisiologia , Sais , Especificidade por Substrato , Temperatura
12.
Proc Natl Acad Sci U S A ; 99(12): 7974-9, 2002 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-12048241

RESUMO

The topoisomerase (topo) III enzymes are found in organisms ranging from bacteria to humans, yet the precise cellular function of these enzymes remains to be determined. We previously found that Drosophila topo IIIbeta can relax plasmid DNA only if the DNA is first hypernegatively supercoiled. To investigate the possibility that topo IIIbeta requires a single-stranded region for its relaxation activity, we formed R-loops and D-loops in plasmids. In addition to containing a single-stranded region, these R-loops and D-loops have the advantage of being covalently closed and supercoiled, thus allowing us to assay for supercoil relaxation. We found that topo IIIbeta preferentially cleaves, rather than relaxes, these substrates. The cleavage of the R-loops and D-loops, which is primarily in the form of nicking, occurs to a greater extent at a temperature that is lower than the optimal temperature for relaxation of hypernegatively supercoiled plasmid. In addition, the cleavage can be readily reversed by high salt or high temperature, and the products fail to enter the gel in the absence of proteinase K treatment and are not observed with an active-site Y332F mutant of topo IIIbeta, indicating that the cleavage is mediated by a topoisomerase. We mapped the cleavage to the unpaired strand within the loop region and found that the cleavage occurs along the length of the unpaired strand. These studies suggest that the topo III enzyme behaves as a structure-specific endonuclease in vivo, providing a reversible DNA cleavage activity that is specific for unpaired regions in the DNA.


Assuntos
DNA Topoisomerases Tipo I/genética , Drosophila/enzimologia , Isoenzimas/genética , Plasmídeos/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Primers do DNA , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Regulação Enzimológica da Expressão Gênica , Isoenzimas/química , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mapeamento por Restrição
13.
J Biol Chem ; 277(30): 26865-71, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12023976

RESUMO

Drosophila topoisomerase (topo) IIIbeta is a member of the type IA family of DNA topoisomerases, which generates a single-stranded break to form a covalent complex with the 5'-end of DNA. We show here that a purified preparation of topo IIIbeta is able to convert a hypernegatively supercoiled substrate into primarily nicked, but also linear, DNA at enzyme/DNA molar ratios of 5:1 or greater. Although the optimal temperature for the relaxation activity is between 37 and 45 degrees C, maximal cleavage occurs between 23 and 30 degrees C, a temperature range that is more physiologically relevant for fruit flies. The cleavage products require protease treatment to enter the gel, they are stable over time, they are reversible, and they are not observed with a Y332F active site mutant, which further supports the idea that topo IIIbeta possesses an endonucleolytic cleavage activity. This cleavage activity appears to be specific for highly unwound, or single strand-containing substrates. Southern blot analysis of the cleavage products demonstrates that the topo IIIbeta cleavage activity is concentrated primarily in highly A/T-rich regions. These results suggest that topo IIIbeta may function as a reversible endonuclease in vivo by recognizing and cleaving/rejoining DNA structures with single-stranded character.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal , Drosophila/enzimologia , Isoenzimas/metabolismo , Animais , Sítios de Ligação , Southern Blotting , DNA/metabolismo , Modelos Genéticos , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA